Last update: 22 January 2014
[Bou1981] N. Bourbaki, Groupes et algèbres de Lie, Chapt. IV-VI, Masson, Paris (1981).
[Car1972] R.W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1-59.
[Dri1986] V.G. Drinfeld, Degenerate affine Hecke algebras and Yangians, Funct. Anal. Appl. 20 (1986), 58-60.
[GHL1996] M. Geck, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer, CHEVIE – A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, AAECC, 7 (1996), 175-210.
[Hum1990] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics No. 29, Cambridge University Press, 1990.
[Lus1989] G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), 599–635. MR 90e:16049
[Lus1988] G. Lusztig, Cuspidal local systems and graded Hecke algebras I, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 145–202. MR 90e:22029
[Mac1995] I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, New York (second edition, 1995).
[OSo1983] P. Orlik and L. Solomon, Coxeter arrangements, Proc. Symp. Pure Math. 40 (1983), 269-291.
[OSo1982] P. Orlik and L. Solomon, Arrangements defined by unitary reflection groups, Math. Ann. 261 (1982), 339-357.
[OTe1992] P. Orlik and H. Terao, Arrangements of hyperplanes, Springer-Verlag, Berlin-Heidelberg, 1992.
[Sch1995] Martin Schnert et.al., GAP – Groups, Algorithms, and Programming, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, fifth edition, 1995.
[STo1954] G. C. Shephard and J.A. Todd, Finite unitary reflection groups, Canadian Journal of Math. 6 (1954), 274–304.
[Ste1964] R. Steinberg, Differential equations invariant under finite reflection reflection groups, Trans. Amer. Math. Soc. 112 (1964), 392–400. MR 29:4807
[Ste1968-2] R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc. 80 (1968) 1–108.
This is a typed version of Classification of graded Hecke algebras for complex reflection groups by Arun Ram and Anne V. Shepler.
Research of the first author supported in part by the National Security Agency and by EPSRC Grant GR K99015 at the Newton Institute for Mathematical Sciences. Research of the second author supported in part by National Science Foundation grant DMS-9971099.