
Linear algebra notes, Arun Ram January 5, 2026

2.4 Normal form: Definitions and results

2.4.1 Invertible generator matrices

Let t → Z>0 and let Eij be the matrix in Mt→t(F) with 1 in the (i, j) entry and all other entries 0. Let

F→ = {d → F | d ↑= 0}.

The elementary diagonal matrices are hi(d) = 1 + (d↓ 1)Eii for i → {1, . . . , t} and d → F→.

hi(d) =





1
. . .

1
d

1
. . .

1





with hi(d)
↑1 =





1
. . .

1
d↑1

1
. . .

1





The root matrices are xij(c) = 1 + cEij for c → F and i, j → {1, . . . , t} with i < j.

xij(c) =





1
. . . c

. . .
. . .

1





with xij(c)
↑1 =





1
. . . ↓c

. . .
. . .

1





The row reducers are si(c) = 1 ↓ Eii ↓ Ei+1,i+1 + Ei,i+1 + Ei+1,i + cEi,i+1 for i → {1, . . . , t ↓ 1} and
c → F.

si(c) =





1
. . .

1
c 1
1 0

1
. . .

1





with si(c)
↑1 =





1
. . .

1
0 1
1 ↓c

1
. . .

1





2.4.2 Proof of the normal form theorem: The greedy reduction algorithm

Let s, t → Z>0 and let A → Mt→s(F) so that

A is a t↔ s matrix with entries in F.

The proof of the following theorem gives an explicit algorithm for writingA as a product of row reducers
si(c), diagonal generators hi(d) and upper triangular elementary matrices xij(aij). This procedure is
no di!erent than the usual row reduction procedure: namely, a way of writing an invertible matrix g
in a ‘normal form’ as a product of elementary matrices by the ‘row reduction’ algorithm. To follow
the proof it is helpful to be looking at examples (see Examples 2.4.3 and 2.4.4 and the examples in
section 3.2).

18



Linear algebra notes, Arun Ram January 5, 2026

Theorem 2.13. Let s, t → Z>0. Let Eij be the t↔ s matrix with 1 in the (i, j) entry and 0 elsewhere.

Let A → Mt→s(F). Then there exist

r → {1, . . . ,min(s, t)}, P → GLt(F), Q → GLs(F)

such that A = P1rQ, where 1r = E11 + · · ·+ Err.

Proof. Step 1. (For an example of this step see Example 2.4.3)
Let j1 be minimal such that column j1 of A has a nonzero entry.
Let i1 be maximal such that A(i1, j1) ↑= 0. Let

A(1) = s1
(

A(1,j1)
A(i1,j1)

)↑1
s2

(
A(2,j1)
A(i1,j1)

)↑1
· · · si1↑1

(
A(i1↑1,j1)
A(i1,j1)

)↑1
A.

Let j2 be minimal such that column j2 of A(1) has a nonzero entry below row 1.
Let i2 > 1 be maximal such that A(1)(i2, j2) ↑= 0. Let

A(2) = s2
(

A(1)(2,j2)
A(1)(i2,j2)

)↑1
s3

(
A(1)(3,j2)
A(1)(i2,j2)

)↑1
· · · si2↑1

(
A(1)(i2↑1,j2)
A(1)(i2,j2)

)↑1
A(1).

Let j3 be minimal such that column j3 of A(2) has a nonzero entry below row 2.
Let i3 > 2 be maximal such that A(2)(i3, j3) ↑= 0. Let

A(3) = s3
(

A(2)(3,j3)
A(2)(i3,j3)

)↑1
s4

(
A(2)(4,j3)
A(2)(i3,j3)

)↑1
· · · si3↑1

(
A(2)(i2↑1,j2)
A(2)(i3,j3)

)↑1
A(2).

Continue this process until it happens that there does not exist jr+1 such that column jr+1 of A(r)

has a nonzero entry below row r. Then A(r) has the property that

the first nonzero entry in row j + 1 is to the right of the first nonzero entry in row j.

and

A = (si1↑1

(
A(i1↑1,j11)
A(i1,j1)

)
· · · s2

(
A(2,j1)
A(i1,j1)

)
s1

(
A(1,j1)
A(i1,j1)

)
)

· (si2↑1

(
A(1)(i2↑1,j2)
A(1)(i2,j2)

)
· · · s3

(
A(1)(3,j2)
A(1)(i2,j2)

)
s2

(
A(1)(2,j2)
A(1)(i2,j2)

)
)

· · · (sir↑1

(
A(1)(jr↑1,jr)
A(1)(ir,jr)

)
· · · sr+1

(
A(1)(r+1,jr)
A(1)(ir,jr)

)
sr

(
A(1)(r,jr)
A(1)(ir,jr)

)
) ·A(r) (Afact)

Then

A(r) =
(
h1(A

(r)(1, j1)) · · ·hr(A(r)(r, jr))
)

·
(
xr↑1,jr

( A(r)(r ↓ 1, jr)

A(r)(r ↓ 1, jr↑1)

)
· · ·x1,jr

(A(r)(1, jr)

A(r)(1, j1)

))

· · ·
(
x2,j3

(A(r)(2, j3)

A(r)(2, j2)

)
x1,j3

(A(r)(1, j3)

A(r)(1, j1)

))
· x1,j2

(A(r)(1, j2)

A(r)(1, j1)

)
·R,

where R is given by

R(k, j) =






A(r)(k,j)
A(r)(k,jk)

,
if k → {1, . . . , r} and j → {jk, jk + 1, . . . , s}
and j ↑→ {jk+1, . . . , jr},

0, otherwise.
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Step 2. (For example of this step see Example 2.4.4.)
Let cr+1 < · · · < cs↑1 < cs be such that {j1, . . . , jr, cr+1, . . . , cs} = {1, . . . , s}. Then

R = 1r ·Q, where Q → GLs(F)

is given by

Q =
(
xr,s

(A(r)(r, cs)

A(r)(r, jr)

)
· · ·x1,s

(A(r)(1, cs)

A(r)1, j1

))

·
(
xr,r+1

(A(r)(r, cr+1)

A(r)(r, jr)

)
· · ·x1,r+1

(A(r)(1, cr+1)

A(r)(1, j1)

))
(Qform)

· (sr · · · sjr↑1) · · · (s2 · · · sj2↑1) · (s1 · · · sj1↑1).

Summary. In summary, A = P1rQ where P → GLt(F) and Q → GLs(F) are given by

P = (si1↑1

(
A(i1↑1,j11)
A(i1,j1)

)
· · · s2

(
A(2,j1)
A(i1,j1)

)
s1

(
A(1,j1)
A(i1,j1)

)
)

· (si2↑1

(
A(1)(i2↑1,j2)
A(1)(i2,j2)

)
· · · s3

(
A(1)(3,j2)
A(1)(i2,j2)

)
s2

(
A(1)(2,j2)
A(1)(i2,j2)

)
)

· · · (sir↑1

(
A(1)(jr↑1,jr)
A(1)(ir,jr)

)
· · · sr+1

(
A(1)(r+1,jr)
A(1)(ir,jr)

)
sr

(
A(1)(r,jr)
A(1)(ir,jr)

)
)

·
(
h1(A

(r)(1, j1)) · · ·hr(A(r)(r, jr))
)

·
(
xr↑1,jr

( A(r)(r ↓ 1, jr)

A(r)(r ↓ 1, jr↑1)

)
· · ·x1,jr

(A(r)(1, jr)

A(r)(1, j1)

))

· · ·
(
x2,j3

(A(r)(2, j3)

A(r)(2, j2)

)
x1,j3

(A(r)(1, j3)

A(r)(1, j1)

))
· x1,j2

(A(r)(1, j2)

A(r)(1, j1)

)

and Q is as in (Qform).

2.4.3 A greedy reduction example

This is an example of Step 1 of the proof of Theorem 2.13. Let

s1(c) =





c 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



 , s2(c) =





1 0 0 0
0 c 1 0
0 1 0 0
0 0 0 1



 , s3(c) =





1 0 0 0
0 1 0 0
0 0 c 1
0 0 1 0



 ,

and let

A =





↓3 ↓36 ↓39 ↓42 ↓46 ↓84
↓9 ↓108 ↓233

2 ↓114 293
2 ↓167

3 36 39 42 45 48
0 0 1

4 6 25
4

13
2




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Then

A =





↓3 ↓36 ↓39 ↓42 ↓46 ↓84
↓9 ↓108 ↓233

2 ↓114 293
2 ↓167

3 36 39 42 45 48
0 0 1

4 6 25
4

13
2





= s2(↓3)





↓3 ↓36 ↓39 ↓42 ↓46 ↓84
3 36 39 42 45 48
0 0 1

2 12 23
2 ↓23

0 0 1
4 6 25

4
13
2





= s2(↓3)s1(↓1)





3 36 39 42 45 48
0 0 0 0 ↓1 ↓36
0 0 1

2 12 23
2 ↓23

0 0 1
4 6 25

4
13
2





= s2(↓3)s1(↓1)s3(2)





3 36 39 42 45 48
0 0 0 0 ↓1 ↓36
0 0 1

4 6 25
4

13
2

0 0 0 0 ↓1 ↓36





= s2(↓3)s1(↓1)s3(2)s2(0)





3 36 39 42 45 48
0 0 1

4 6 25
4

13
2

0 0 0 0 ↓1 ↓36
0 0 0 0 ↓1 ↓36





= s2(↓3)s1(↓1)s3(2)s2(0)s3(1)





3 36 39 42 45 48
0 0 1

4 6 25
4

13
2

0 0 0 0 ↓1 ↓36
0 0 0 0 0 0





In this example,

A(1) =





3 36 39 42 45 48
0 0 0 0 ↓1 ↓36
0 0 1

2 12 23
2 ↓23

0 0 1
4 6 25

4
13
2



 and A(1) = s1(↓1)↑1s2(↓3)↑1A.

Then

A(2) =





3 36 39 42 45 48
0 0 1

4 6 25
4

13
2

0 0 0 0 ↓1 ↓36
0 0 0 0 ↓1 ↓36



 and A(2) = s2(0)
↑1s3(2)

↑1A(1).

Then

A(3) =





3 36 39 42 45 48
0 0 1

4 6 25
4

13
2

0 0 0 0 ↓1 ↓36
0 0 0 0 0 0



 and A(3) = s3(1)
↑1A(2).
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2.4.4 An example of the factorization a row echelon matrix

This is an example of Step 2 of the proof of Theorem 2.13. Let

h1(d) =





d 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 h2(d) =





1 0 0 0
0 d 0 0
0 0 1 0
0 0 0 1



 h3(d) =





1 0 0 0
0 1 0 0
0 0 d 0
0 0 0 1





and let xij(c) denote the square matrix with 1s on the diagonal, c in the (i, j) entry and 0 elsewhere.

If A(3) =





3 36 39 42 45 48
0 0 1

4 6 25
4

13
2

0 0 0 0 ↓1 ↓36
0 0 0 0 0 0





then

A(3) = h1(3)h2(
1
4)h3(↓1)





1 12 13 14 15 16
0 0 1 24 25 26
0 0 0 0 1 36
0 0 0 0 0 0





= h1(3)h2(
1
4)h3(↓1) · x23(25)x13(15)x12(13)





1 12 0 14 0 16
0 0 1 24 0 26
0 0 0 0 1 36
0 0 0 0 0 0





= h1(3)h2(
1
4)h3(↓1) · x23(25)x13(15)x12(13) ·R

where

R =





1 12 0 14 0 16
0 0 1 24 0 26
0 0 0 0 1 36
0 0 0 0 0 0



 =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0









1 12 0 14 0 16
0 0 1 24 0 26
0 0 0 0 1 36
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1





= 13





1 12 0 14 0 16
0 0 1 24 0 26
0 0 0 0 1 36
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1




= 13Q.

So

A(3) = h1(3)h2(
1
4)h3(↓1) · x23(25)x13(15)x12(13) ·R

= h1(3)h2(
1
4)h3(↓1) · x23(25)x13(15)x12(13) · 13 ·Q,
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where

Q =





1 12 0 14 0 16
0 0 1 24 0 26
0 0 0 0 1 36
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1




=





1 0 0 12 14 16
0 1 0 0 24 26
0 0 1 0 0 36
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




s3s4s2 =

x36(36)x26(26)x16(16)
·x25(24)x15(14)x24(12)
·s3s4s2.

2.4.5 A normal form example

This is an example of the output of the proof of Theorem 2.13. Combining examples 2.4.3 and 2.4.4,

if A =





↓3 ↓36 ↓39 ↓42 ↓46 ↓84
↓9 ↓108 ↓233

2 ↓114 293
2 ↓167

3 36 39 42 45 48
0 0 1

4 6 25
4

13
2



 then A = P13Q,

where

P =
s2(↓3)s1(↓1)s3(2)s2(0)s3(1)
·h1(3)h2(14)h3(↓1) · x23(25)x13(15)x12(13)

in GL4(F)

and

Q =
x36(36)x26(26)x16(16)
·x25(24)x15(14)x24(12)

·s3s4s2.
in GL6(F).
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