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Lecture 9: Equations of lines and planes in R3

Definition

The line in R3 with direction v = |a, b, c→ going through the point
r0 = |x0, y0, z0→ is

r0 +Rv = {r0 + tv | t ∈ R} PICTURE .

Definition

The plane in R3 spanned in directions u = |u1, u2, u3→ and
v = |v1, v2, v3→ going through the point r0 = |x0, y0, z0→ is

r0 + Ru+ Rv = {r0 + su+ tv | s, t ∈ R} PICTURE .
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Equations of lines in R3

Definition

The line in R3 with direction v = |a, b, c→ going through the point
r0 = |x0, y0, z0→ is

r0 +Rv = {r0 + tv | t ∈ R} PICTURE .

The points in the line are the |x , y , z→ in R3 such that

(x , y , z) = (x0, y0, z0) + t(a, b, c), with t ∈ R, (vector equation)

or
x = x0 + ta,
y = y0 + tb,
z = z0 + tc ,

with t ∈ R, (parametric equation)

Solving for t gives that the points on the line are the |x , y , z→ in R3

which satisfy the equations

x − x0
a

=
y − y0

b
=

z − z0
c

. (Cartesian form)
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Equations of planes in R3

Definition

The plane in R3 spanned in directions u = |u1, u2, u3→ and
v = |v1, v2, v3→ going through the point r0 = |x0, y0, z0→ is

r0 + Ru+ Rv = {r0 + su+ tv | s, t ∈ R} PICTURE .

The points in the line are the |x , y , z→ in R3 such that

x = x0 + su1 + tv1,
y = y0 + su2 + tv2,
z = z0 + su3 + tv3,

with s, t ∈ R. (parametric equation)

The vector equation is

(x , y , z) = (x0, y0, z0) + s(u1, u2, u3) + t(v1, v2, v3), with s, t ∈ R.
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Let n = |a, b, c→ be such that n is perpendicular to both u and v. In
other words, n is a vector perpendicular to the plane. Then

〈n|x , y , z→ = 〈n, r0 + su+ tv→ = 〈n, r0→+ s〈n,u→+ t〈n, v→
= 〈n, r0→+ s · 0 + t · 0 = 〈n, r0→,

and since 〈n|x , y , z→ = 〈a, b, c |x , y , z→ = ax + by + cz then the plane is
the set of |x , y , z ∈ R3 such that

ax + by + cz = 〈r0,n→. (Cartesian form)

101



Example E8. Determine the vector, parametric and Cartesian equations
of the line through the points P = (−1, 2, 3) and Q = (4,−2, 5).

Since the direction of the line is

Q − P = |4,−2, 5→ − |− 1, 2, 3→ = |5,−4, 2→

and
P = |−1, 2, 3→ is a point on the line

then the line is the set of points in R3 given by

{ |−1, 2, 3→ + t · |5,−4, 2→ | t ∈ R}.

Parametric equations for the line are

x = −1 + 5t,
y = 2− 4t,
z = 3 + 2t,

with t ∈ R.

Solving for t, the Cartesian equation of the line is

x + 1

5
=

y − 2

−4
=

z − 3

2
.
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Example E9. Find a vector equation of the “friendly” line through the
point (2, 0, 1) that is parallel to the “enemy” line

x − 1

1
=

y + 2

−2
=

z − 6

2
.

Does the point (0, 4,−3) line on the “friendly” line?

Letting

t =
x − 1

1
=

y + 2

−2
=

z − 6

2
gives

x = 1 + t,
y = −2− 2t,
z = 6 + 2t

with t ∈ R, and {(1,−2, 6) + t((1,−2, 2) | t ∈ R}

is the set of points in R3 that lie on the “enemy” line.
The “friendly” line we want is parallel to the “enemy” line and consists
of the points

{ |2, 0, 1→ + t |1,−2, 2→ | t ∈ R}.
Since |2, 0, 1→ + (−2) · |1,−2, 2→ = |0, 4,−3→ then |0, 4,−3→ is on the
“friendly’ line.
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Example E11. Find the vector equation for the plane in R3 containing
the points P = |1, 0, 2→ and Q = |1, 2, 3→ and R = |4, 5, 6→.
The point |1, 0, 2→ is in the plane and two vectors in the plane are

Q − P = |0, 2, 1→ and R − P = |3, 5, 4→.

So the points in the plane are the points |x , y , z→ in R3 which satisfy

|x , y , z→ = |1, 0, 2→ + s|0, 2, 1→ + t|3, 5, 4→ with s, t ∈ R.
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Example E12. Where does the line

x − 1

1
=

y − 2

2
=

z − 3

3

intersect the plane 3x + 2y + z = 20?

The line in parametric form is

x = 1 + t,
y = 2 + 2t,
z = 3 + 3t,

with t ∈ R,

and plugging into the equation of the plane gives

20 = 3(t + 1) + 2(2t + 2) + (3t + 3) = 10t + 10 so that t = 1.

Thus the point |x , y , z→ with x = 1 + 1 = 2, y = 2 + 2 = 4 and
z = 3 + 3 is on both the line and the plane.
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Example E13. Find a vector form for the line of intersection of the two
planes x + 3y + 2z = 6 and 3x + 2y + z = 11.

The points on the intersection of the two planes are the points |x , y , z→
that satisfy the system of equations

3x + 2y − z = 11,
x + 3y + 2z = 6,

which is

(

3 2 −1
1 3 2

)





x
y
z



 =

(

11
6

)

.

Left multiply both sides by

(

0 1
1 −3

)

to get

(

1 3 2
0 −7 −7

)





x
y
z



 =

(

6
−7

)

.

Left multiply both sides by

(

1 0
0 −1

7

)

to get

(

1 3 2
0 1 1

)





x
y
z



 =

(

6
1

)

.
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Left multiply both sides by

(

1 −3
0 1

)

to get

(

1 0 −1
0 1 1

)





x
y
z



 =

(

3
1

)

.

So

x − z = 3,
y + z = 1,

giving
x = 3 + z ,
y = 1− z ,
z = 0 + z ,

where z can be any element of R. So the solutions to these equations
are





x
y
z



 =





3
1
0



+ span











1
−1
1











=





3
1
0



+







t





1
−1
1





∣

∣

∣
t ∈ R






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which is the line

{|3, 1, 0→ + t|1,−1, 1→ | t ∈ R}

as the line of intersection of the two planes.
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