

1.8 Pop quiz on Lecture 8 material

1. Let $u = |1, 3, 1, 2\rangle$ and $v = |2, 1, -1, 3\rangle$ in \mathbb{R}^4 . Determine $u - v$ and $d(u, v)$.
2. Let $u = |0, 2, 2, -1\rangle$ and $v = |-1, 1, 1, -1\rangle$ in \mathbb{R}^4 . Determine $\langle u, v \rangle$ and $\|u\|$ and $\|v\|$ and check that the Cauchy-Schwarz inequality holds in this example.
3. Let $u = |2, -1, -2\rangle$ and $v = |2, 1, 3\rangle$ in \mathbb{R}^3 . Find vectors v_1 and v_2 such that $v = v_1 + v_2$ and v_1 is parallel to u and v_2 is perpendicular to u .
4. Carefully prove that if $x, y \in \mathbb{R}^n$ then $\langle y, x \rangle = \langle x, y \rangle$.
5. Carefully prove that if $x, y, z \in \mathbb{R}^n$ then $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$.
6. Carefully prove that if $x, y, z \in \mathbb{R}^n$ then $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.
7. Carefully prove that if x, y and $c \in \mathbb{R}$ then $\langle x, cy \rangle = c\langle x, y \rangle$.
8. Carefully prove that if x, y and $c \in \mathbb{R}$ then $\langle cx, y \rangle = c\langle x, y \rangle$.
9. Carefully prove that if x and $c \in \mathbb{R}$ then $\|cx\| = |c| \cdot \|x\|$.