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Lecture 8: The Hilbert space R”

Definition (The vector space R")
Let n € Z~o. The R-vector space R" is

( 2\

R" = Maxi(R) = {|x1,....xa) | x €R} where |xq,...,x,) =

o/

The addition and scalar multiplication are given by

|X17X27°"7Xn> + |y1,)/2,---,)/n> — |X1 + Y1, X2 ‘|‘)/27---7Xn‘|‘)/n>

and
c|x1, X0, ..., xn) = |cx1,¢cx0,...,¢cxy) for c € R.

89



Definition (Inner product, length function and distance function)

The standard inner product on R" is { | ): R” x R" — R given by

(1)
Y2
<X17-~7Xn’)/1>--~7)/n> — (Xl X2 Xn) : = X1Y1 + *** + XnYn-
\n/
The length function is || ||: R" — R>q given by
| [x1s -y xn) || = A/x2 + X2 + -+ + x2.

The distance function is d: R" x R" — R>¢ given by

A5t - %) [V y)) = || 5t %a) = Iyas -yl
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Theorem (Cauchy-Schwarz and the triangle inequality)
Let u,v € R". Then

[{u, v)| < Jull - vl and  flu+ || < fluf] + [[v]

|f
X = |X1,X2,...,Xn) and Yy =|y1,¥2,...,¥n)
then
(x,¥) = x"y = x1y1 + xay2 + -+ + Xn¥n
and

Ixl = V{x,x) and |x|*=(x,x)  and

d(x,y) = lly = x|l = V{y =%,y —x)
:\/()/1—X1)2-|--~—|—(yn—xn)2.
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Properties used VERY often.
Let x,y,z € R" and let c € R.

(Y, Xx) = y1x1 + yoxo + -+ + YnXp
= X1 + X2V>2 + - *XnYn — <X7 y>7

x,y+2z)=x"(y+z)=x"y+x"z=(xy) + (x,2),
(x+y,z) = (z,x+y) = (z,x) + (2,y) = (x,2) +(y, 2),

<X7 Cy> — XTCy — CxTy — C<X7 y>7 <CX7Y> — <y7 CX> — C<Y7x> — C<X7 Y>7

x|l = V{ex, ex) = y/c2(x,x) = Ve2/ix.x) = |c] - [Jx].
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Definition (Angle and projection)
Let u,v € R” with u # 0 and v # 0. The angle between u and v is
f(u,v) given by

 {u,v)
cos(8(u ) = Tl vl

The projection of v onto u is

(u, v)
(u, u)

proj, v =

u.

>

> X

y = cos(x)
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Example E1. If u=1,3,1,2) and v = |2,1,—1,3) in R* then
u—v=,|1,-20,1)

and the distance between the points (1,3,1,2) and (2,1,—1,3) is

d(u,v) = | |1,-2,0,1) || = /12 4 (~2) + 02 4+ 11
=V1+4+0+1=6.

Example E2. If u=10,2,2,—~1) and v =|-1,1,1,—1) in R* then

(u,v) = (0,2,2,—1|—1,1,1, —1)
—0-(-1)4+2-142-14(=1)-(=1)
—0+2+1+1=5

and

lu|=vV0+4+4+1=v9=3

and

v[[=vV1i+1+1+1=Va=2
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Since |5 < 32 we observe that, in this case,
[(u, v)| < lul] - lv][.

Example E4. Let u = (2,—1,—-2) and v = (2,1,3). Find vectors v; and
Vo> such that
V=V] +V

where vy is parallel to u and v, is perpendicular to u.

Solution: Since the projection of v onto u is parallel to u then let

Vi = proj, v = <u7V>u— _3u
1 = ProjyVv = <U,U> — 9
— %1’27_17_2> — |_T27 %7 %>
and
VZZU_V].:’27_17_2>_|%7%7%> ‘%7%7§>

Then u = v; +vs and vy is parallel to u and v» is perpendicular to u.



