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| ecture 7: Determinants

Let n € Z~o. Let Ej; be the n X n matrix with 1 in the (/,/) entry and 0
elsewhere. For i € {1,...,n— 1} and c € QQ define

si(c) =1—Ej — Eix1,i+1 + Eiis1 + Eiq1,i + cEji.
Forie {1,...,n} and d € Q with d # 0 define
hi(d) =1+ (d — 1)Ei,
For i,j € {1,...,n} with i # j and c € Q define
xji(c) = 1+ cEy,
For r € {1,...,n} define

l, = Ey1 + -+ Ep.
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Definition (Determinant)

The deteminant is the function det: M, ,(Q) — Q determined by
if A,B € M,«,(Q) then det(AB) = det(A) det(B),

and ifi,je{l,...,n} withi#jand re{l,...,n—1} and ¢c,d € Q
with d # 0 then

det(x;j(c)) =1, det(hi(d)) =d, det(s,(c))=—L1.

Theorem (Greedy normal form)
Forre {1l,... min(s,t)} let

l, =Ei1+ -+ Ep.
Let A€ My s(Q). The greedy normal form gives

A = (product of si(c)s) - (product of h;(d)s) - (product of x;i(c)s)
-1, - (product of sj(c)s) - (product of x(c)s).
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—1
1 3 3
A= h1(2)h2(3)h3(_1) (O 1 %
0 0 1
— h1(2)h2(3)/73(—1)X12(3)X13(%)X23(%)

So

det(A) = det (hy(2)h2(3)h3(—1)x12(3))x13(3 )x23(3)
= det(h1(2)) det(ho(3)) det(hz(—1))
. det(x12(3))) det (x13(2)) det(xa3(2))
=2.3.(=1)-1-1-1=—6.
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So det(A) = (=1)- (1) (=1)-1-(-7) =T7.
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Definition (the (/, j)-cofactor)

Let A€ M,xn(Q) and let i,j € {1,...,n}.

the ith row removed

Let AUY) be the matrix A with .
and the jth column removed.

The (i, j)-cofactor of A is
Cj = (1) det(AUY)).

Theorem (cofactor expansion)
Let A€ Mpyn(Q) and let i,j € {1,...,n}. Then

cofactor expansion

det(A) = AinCin + A Ciz + - - - + AinC across the ith row

and

cofactor expansion

det(A) = A1jCij + AgjCoj + -+ - + Apj Ciyj. down the jth column
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Example M14. Since 1 = AA™! then det(1) = det(A)det(A™1). So

1

1 = det(A)det(A™") and det(A)

= det(A™1).
1

Example M15 and 16. If A= | —1
0

Coz = (—1)°T3 det (é i) (=1)°(1-1-0-2) = —1.

Using cofactor expansion along the third row,

der(4) = (-1 0-det (7 1) + (-1 1der (1)}

—1 1
1 2
_1\3+3 2.
+ (—1) 3 det(_1 1)

—0-(1-1—(-1)-1)+3(1-1-(-1)-2)=0-2+9="T.

— o= N

1
1 | then the (2,3)-cofactor is
3
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1 -2 0 1
3 2 20
Example M17. Let A= {1 0 1 0
0 —4 2 4
Using cofactor expansion down the fourth column,
3 2 2
det(A) = (-1)**.1-det|1 0 1]4+0+0
0 —4 2
1 -2 0
+(=1D)** . 4.det [3 2 2
1 0 1

— _((_1)1+1 .3 - det (_04 ;) +(—=1)* . 1. det(

+4((—1)1+1 -1 - det (g i) + (=12 (=2) -

— —3(0+4)+ (4+8)+4((2—0)+2(2 - 3))
= —-12+12+8+ 8 =16.

2 2
—4 2

)+0)

3 2
det(l 1)+0)
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