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Lecture 7: Determinants

Let n → Z>0. Let Eij be the n× n matrix with 1 in the (i , j) entry and 0
elsewhere. For i → {1, . . . , n − 1} and c → Q define

si(c) = 1− Eii − Ei+1,i+1 + Ei ,i+1 + Ei+1,i + cEii .

For i → {1, . . . , n} and d → Q with d $= 0 define

hi (d) = 1 + (d − 1)Eii ,

For i , j → {1, . . . , n} with i $= j and c → Q define

xij(c) = 1 + cEij ,

For r → {1, . . . , n} define

1r = E11 + · · ·+ Err .
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Definition (Determinant)

The deteminant is the function det : Mn×n(Q) → Q determined by

if A,B → Mn×n(Q) then det(AB) = det(A) det(B),

and if i , j → {1, . . . , n} with i $= j and r → {1, . . . , n − 1} and c , d → Q

with d $= 0 then

det(xij(c)) = 1, det(hi (d)) = d , det(sr (c)) = −1.

Theorem (Greedy normal form)

For r → {1, . . . ,min(s, t)} let

1r = E11 + · · ·+ Err .

Let A → Mt×s(Q). The greedy normal form gives

A = (product of si(c)s) · (product of hi (d)s) · (product of xij(c)s)
· 1r · (product of si (c)s) · (product of xij(c)s).
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Example M12. Let A =





2 6 9
0 3 8
0 0 −1



. Then

A = h1(2)h2(3)h3(−1)





1 3 9
2

0 1 8
3

0 0 1





= h1(2)h2(3)h3(−1)x12(3)x13(
9
2)x23(

8
3 ),

So

det(A) = det
(

h1(2)h2(3)h3(−1)x12(3))x13(
9
2)x23(

8
3

)

= det(h1(2)) det(h2(3)) det(h3(−1))

· det(x12(3))) det(x13(92 )) det(x23(
8
3 ))

= 2 · 3 · (−1) · 1 · 1 · 1 = −6.
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Example M13. Let A =





1 2 1
−1 1 1
0 1 3



. Then

A =





−1 1 0
1 0 0
0 0 1









−1 1 1
0 3 2
0 1 3





=





−1 1 0
1 0 0
0 0 1









1 0 0
0 3 1
0 1 0









−1 1 1
0 1 3
0 0 −7





= s1(−1)s2(3)





−1 1 1
0 1 3
0 0 −7



 .

So det(A) = (−1) · (−1) · (−1) · 1 · (−7) = 7.
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Definition (the (i , j)-cofactor)

Let A → Mn×n(Q) and let i , j → {1, . . . , n}.

Let A(i ,j) be the matrix A with
the ith row removed
and the jth column removed.

The (i , j)-cofactor of A is

Cij = (−1)i+j det(A(i ,j)).

Theorem (cofactor expansion)

Let A → Mn×n(Q) and let i , j → {1, . . . , n}. Then

det(A) = Ai1Ci1 + Ai2Ci2 + · · ·+ AinCin
cofactor expansion
across the ith row

and

det(A) = A1jC1j + A2jC2j + · · ·+ AnjCnj .
cofactor expansion
down the jth column
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Example M14. Since 1 = AA−1 then det(1) = det(A) det(A−1). So

1 = det(A) det(A−1) and
1

det(A)
= det(A−1).

Example M15 and 16. If A =





1 2 1
−1 1 1
0 1 3



 then the (2,3)-cofactor is

C23 = (−1)2+3 det

(

1 2
0 1

)

= (−1)5(1 · 1− 0 · 2) = −1.

Using cofactor expansion along the third row,

det(A) = (−1)3+1 · 0 · det
(

2 1
1 1

)

+ (−1)3+2 · 1 · det
(

1 1
−1 1

)

+ (−1)3+3 · 3 · det
(

1 2
−1 1

)

= 0− (1 · 1− (−1) · 1) + 3(1 · 1− (−1) · 2) = 0− 2 + 9 = 7.
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Example M17. Let A =









1 −2 0 1
3 2 2 0
1 0 1 0
0 −4 2 4









.

Using cofactor expansion down the fourth column,

det(A) = (−1)1+4 · 1 · det





3 2 2
1 0 1
0 −4 2



+ 0 + 0

+ (−1)4+4 · 4 · det





1 −2 0
3 2 2
1 0 1





= −
(

(−1)1+1 · 3 · det
(

0 1
−4 2

)

+ (−1)2+1 · 1 · det
(

2 2
−4 2

)

+ 0
)

+ 4
(

(−1)1+1 · 1 · det
(

2 2
0 1

)

+ (−1)1+2 · (−2) · det
(

3 2
1 1

)

+ 0
)

= −3(0 + 4) + (4 + 8) + 4
(

(2− 0) + 2(2 − 3)
)

= −12 + 12 + 8 + 8 = 16.
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