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Lecture 6: Kernels and Images

The set of s → 1 matrices with entries in Q is

Qs = Ms×1(Q).

Definition (Kernel and image of a matrix)

Let A ∈ Mt×s(Q). The kernel of A is

ker(A) = {x ∈ Qs | Ax = 0}

and the image of A is

im(A) = {Ax | s ∈ Qs}.

Definition (Solutions of a linear system)

Let A ∈ Mt×s(Q) and let b ∈ Qs . The set of solutions of the linear
system Ax = b is

Sol(Ax = b) = {x ∈ Qs | Ax = b}.
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Example LS7. If A =





1 0 1
0 2 2
0 0 0



, x =





x1
x2
x3



 and b =





−2
4
−3



 then

Ax = b is the system

x1 + 0x2 + x3 = −2,
0x1 + 2x2 + 2x3 = 4,

0x1 + 0x2 + 0x3 = −3,
which has no solutions

(no choice of x1, x2x3 ∈ Q will satisfy the third equation). So

Sol(Ax = b) = ∅, and the system is inconsistent.

Then Ax = 0 is the system

x1 + 0x2 + x3 = 0,
0x1 + 2x2 + 2x3 = 0,
0x1 + 0x2 + 0x3 = 0,

which is
x1 = −x3,
x2 = x3,
x3 = x3,

where x3 can be any number.
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So

ker(A) =







x3





−1
−1
1





∣

∣

∣
x3 ∈ Q







= Q-span











−1
−1
1











.

Then

im(A) =











1 0 1
0 2 2
0 0 0









x1
x2
x3





∣

∣

∣ x1, x2, x3 ∈ Q







=







x1





1
0
0



+ x2





0
2
0



+ x3





1
2
0





∣

∣

∣
x1, x2, x3 ∈ Q







= Q-span







columns of





1 0 1
0 2 2
0 0 0










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Example LS8. If A =





1 0 0
0 1 0
0 0 1



 and b =





−2
4
15



 then

x1 + 0x2 + 0x3 = 2,
0x1 + 1x2 + 0x3 = −4,
0x1 + 0x2 + x3 = 15,

which has exactly
one solution

x1 = 2,
x2 = −4,
x3 = 15.

Sol(Ax = b) =











2
−4
15











.
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Then Ax = 0 is the system

x1 + 0x2 + 0x3 = 0,
0x1 + 1x2 + 0x3 = 0,
0x1 + 0x2 + x3 = 0,

which has exactly
one solution

x1 = 0,
x2 = 0,
x3 = 0.

So

ker(A) =











0
0
0











.

Then

im(A) =











1 0 0
0 1 0
0 0 1









x1
x2
x3





∣

∣

∣ x1, x2, x3 ∈ Q







=







x1





1
0
0



+ x2





0
1
0



+ x3





0
0
1





∣

∣

∣
x1, x2, x3 ∈ Q







=











x1
x2
x3





∣

∣

∣
x1, x2, x3 ∈ Q







= Q3.
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Example LS9. If

A =









1 2 0 0 5
0 0 1 0 6
0 0 0 1 7
0 0 0 0 0









and b =





1
2
3



 then

x1 + 2x2 + 0x3 + 0x4 + 5x5 = 1,
0x1 + 0x2 + 1x3 + 0x4 + 6x5 = 2,
0x1 + 0x2 + 0x3 + x4 + 7x5 = 3,
0x1 + 0x2 + 0x3 + 0x4 + 0x5 = 0,

which has an infinite
number of solutions.

More specifically,

Sol(Ax = b) =























x =













x1
x2
x3
x4
x5













∣

∣

∣

x1 = 1− 2x2 − 5x5,
x2 ∈ Q,

x3 = 2− 6x5,
x4 = 3− 7x5,
x5 ∈ Q






















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Equivalently,

Sol(Ax = b) =























x =













1
0
2
3
0













+









−2x2
x2
0
0









+













−5x5
0

−6x5
−7x5
x5













∣

∣

∣
x2, x5 ∈ Q























=













1
0
2
3
0













+























x2













−2
1
0
0
0













+ x5













−5
0
−6
−7
1













∣

∣

∣
x2, x5 ∈ Q























=













1
0
2
3
0













+Q-span



































−2
1
0
0
0













,













−5
0
−6
−7
1



































= p+ ker(A).
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Let n ∈ Z>0. Let Eij be the n→ n matrix with 1 in the (i , j) entry and 0
elsewhere.

Definition (root matrices, diagonal generators and row reducers)

Let i , j ∈ {1, . . . , n} with i %= j . Let c ∈ Q. The root matrix xij(c) is

xij(c) ∈ Mn×n(Q) given by xij(c) = 1 + cEij .

Let i ∈ {1, . . . , n}. Let d ∈ Q with d %= 0. The diagonal generator
hi(d) is

hi (d) = 1 + (d − 1)Eii .

Let i ∈ {1, . . . , n − 1} and let c ∈ Q. The row reducer si (c) is

si(c) = 1− Eii − Ei+1,i+1 + Ei ,i+1 + Ei+1,i + cEii .

Theorem (Generators for GLn)

Let A ∈ GLn(Q). Then A can be written as a product of row reducers,
diagonal generators and root matrices.
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The last theorem is really a special case of the following theorem.

Theorem (Greedy normal form)

For r ∈ {1, . . . ,min(s, t)} let

1r = E11 + · · ·+ Err .

Let A ∈ Mt×s(Q). The greedy normal form gives

A = (product of si(c)s) · (product of hi (d)s) · (product of xij(c)s)
· 1r · (product of si (c)s) · (product of xij(c)s).

Corollary (Packaged normal form)

Let A ∈ Mt×s(Q). Then there exist P ∈ GLt(Q) and Q ∈ GLs(Q) and
r ∈ {1, . . . ,min(s, t)} such that

A = P1rQ, where 1r = E11 + E22 + · · ·+ Err .
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Theorem (Computing kernels and images with normal form)

Let P ∈ GLt(Q), Q ∈ GLs(Q). Let r ∈ {1, . . . ,min(s, t)} and let

1r = E11 + E22 + · · · + Err in Mt×s(Q).

Then

ker(P1rQ) = ker(1rQ) = Q−1 ker(1r ) = span{last s−r colums of Q−1},

im(P1rQ) = im(P1r ) = Pim(1r ) = span{first r colums of P}.

Corollary (rank-nullity theorem)

Let A ∈ Mt×s(Q). Since (s − r) + r = s then

dim(ker(A)) + dim(im(A)) = (number of columns of A).
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Theorem (Computing solutions of linear systems)

Let P ∈ GLt(Q), Q ∈ GLs(Q). Let r ∈ {1, . . . ,min(s, t)} and let

1r = E11 + E22 + · · · + Err in Mt×s(Q).

Let A = P1rQ and let b ∈ Qt . Then

Sol(Ax = b) =























































Q−1

























(P−1b)1
...

(P−1b)r

0
...

0

























+ ker(A),

if entries

r+1, . . . , t

of P−1b

are all 0,

∅, otherwise.
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