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Lecture 6: Kernels and Images

The set of s x 1 matrices with entries in Q is

@S — Msxl(@)-

Definition (Kernel and image of a matrix)
Let A € M;xs(Q). The kernel of A is

ker(A) = {x € Q° | Ax =0}
and the image of A is
im(A) = {Ax | s € Q°}.

Definition (Solutions of a linear system)

Let A€ M;«s(Q) and let b € Q°. The set of solutions of the linear
system Ax = b is

Sol(Ax = b) = {x € Q° | Ax = b}.
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1 X1 —2
2], x=1x]| andb=| 4 | then
0 X3 —3

Example LS7. If A=

O O =
o N O

Ax = b is the system

x1 + 0xp + x3 = —2,
Ox1 + 2x2 4+ 2x3 = 4,  which has no solutions
0x1 + 0xo + Ox3 = —3,
(no choice of x1,x2x3 € Q will satisfy the third equation). So

Sol(Ax = b) =), and the system is inconsistent.

Then Ax = 0 is the system

x1 + 0xo + X3 = O) X1 = —X3,
Ox1 + 2x0 + 2x3 = 0,  which is Xp = X3,
0x1 + 0xo + Ox3 = 0, X3 = X3,

where x3 can be any number.
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So

( _1 ) 4 _1 )
ker(A) =< x3 | —1 ‘ x3€Q 3 =Q-span< | -1 ;.
\ 1 / \ 1 /
Then
( 1 1 X1 )
im(A)=<¢ |0 21 | xo X1,X2,X3 cQ;
0 0 X3

/
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0
2
0
\
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= (Q-span ¢ columns of 2
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1 00 —2
Example LS8. If A= [0 1 0] andb=| 4 | then
0 0 1 15
X1+ 00 +0x =2, which has exactly X1 =2,
Oxa + Lxz +0x3 = —4, one solution X2 = —4,
Ox1 + O0xo + x3 = 15, x3 = 15.

( 2 )
Sol(Ax=b)=<¢ | -4 ;.
15

\ /




Then Ax = 0 is the system

X1+ 0x +0x3 =0, which has exactly x1 =0,
Ox1 + 1xo + Ox3 = 0, _ xp = 0,
one solution
Ox1 + 0xo + x3 = 0, x3 = 0.
So
( O 3\
ker(A) =< (0] ;
\ O /
Then
( 1 0 O X1 )
im(A)=<¢ (0 1 O X |X1,X2,X3€@>
L 0 0 1 X3 )
( 1 0 0
:<X1 0 _|'X2 1 _|_X3 0 |X17X27X3E@
\ 0 0 1
( X]_ )
=< | x x1,x2,x3 € Q » = Q°
L\ <3 J
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Example LS9. If

O O ON

o O = O

O~ O O

O N O O

and b= then

W =

x1 + 2xp + 0x3 + 0x4 + bxg = 1,

Ox1 + 0xo + 1x3 + Oxg + 6x5 = 2,
Ox1 + 0xo + 0x3 + x4 + 7x5 = 3,

Ox1 + 0xo> + Ox3 + Oxg 4+ Ox5 = 0,

More specifically,

Sol(Ax = b)

\

\

(1)
X2
X3

»

x1 =1—2xp — bxg,

XZGQa
| x3 = 2 — bxs,
X4:3—7X5,

which has an infinite
number of solutions.

x5 € Q )
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Equivalently,

Sol(Ax = b)

\

m

\o/

+ 4 X2

p + ker(A).

+ X5
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Let n € Z~q. Let Ej; be the n x n matrix with 1 in the (/,) entry and 0
elsewhere.

Definition (root matrices, diagonal generators and row reducers)

Let i,j € {1,...,n} with i #j. Let c € Q. The root matrix xji(c) is
xii(c) € Maxn(Q) given by xj(c) =1+ cEj.

Let i € {1,...,n}. Let d € Q with d # 0. The diagonal generator
hi(d) is
h,'(d) =1+ (d — ].)E,','.

Let i€ {1,...,n—1} and let c € Q. The row reducer sj(c) is
si(c)=1—Eii — Eiva,iv1 + Eiiv1 + Eiya,i + cEis.

Theorem (Generators for GL,)

Let A€ GL,(Q). Then A can be written as a product of row reducers,
diagonal generators and root matrices.
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The last theorem is really a special case of the following theorem.

Theorem (Greedy normal form)
Forr € {1,... min(s,t)} let

l, = Ex1+ -+ Ep.
Let A € M;«s(Q). The greedy normal form gives

A = (product of si(c)s) - (product of h;(d)s) - (product of x;i(c)s)
-1, - (product of sj(c)s) - (product of x;(c)s).

Corollary (Packaged normal form)

Let A€ M;«s(Q). Then there exist P € GL:(Q) and Q € GLs(Q) and
re{l,...,min(s,t)} such that

A= P1,Q, where 1, = Ey1 + Exp + -+ -+ E,,.
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Theorem (Computing kernels and images with normal form)
Let P € GL:(Q), Q € GLs(Q). Let r € {1,...,min(s,t)} and let

L, =Enn+Ex+---+E+ in Ms(Q).
Then
ker(P1,Q) = ker(1,Q) = Q" ker(1,) = span{last s—r colums of Q~1},

im(P1,Q) = im(P1,) = Pim(1,) = span{first r colums of P}.

Corollary (rank-nullity theorem)
Let A € M;ys(Q). Since (s —r)+ r =s then

dim(ker(A)) + dim(im(A)) = (number of columns of A).
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Theorem (Computing solutions of linear systems)
Let P € GL:(Q), Q € GLs(Q). Let r € {1,...,min(s,t)} and let

I, =Enn+Ex+---+E+ in Ms(Q).

Let A= P1,Q and let b € Q. Then

f ((P~1b):
: if entries
0! (P~1b), T ker(A) r+1,...,t
Sol(Ax = b) = ¢ 0 " of P71
: are all 0,
\ o
L0, otherwise.
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