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Lecture 5: Row operations

1 2 1
Example M6 Find the inverseof A= | -1 -1 1
0 1 3

Start with AA~1 = 1 which is
1 2 1 1 00
-1 -1 1|At=101 0
0 1 3 0 0 1

Left multiply both sides by

O
O = O
= O O

1 21 1 00
toget [0 1 2|At=[1 1 0
01 3 0 0 1
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Left multiply both sides by

1 0 O 1 2 1 1 0 O
0 1 0| toget [0 1 2|At=|1 1 0
0 -1 1 0 0 1 -1 -1 1
Left multiply both sides by
1 0 —1 1 20 2 1 -1
01 —2| toget (0 1 0|A =3 3 -2
00 1 001 ~1 -1 1
Left multiply both sides by
1 -2 0 1 00 —4 -5 -3
0 1 0| toget (0 1 olAt=|3 3 -2
0 0 1 001 ~1 -1 1

Carefully compare this solution of Example 6 in Topic 2 of the lecture
slides to the solution given below.
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Example 6.

Find the inverse of A = | —

Solution:

Form the augmented matrix [A | l3] and perform row operations so that

O

|
== N

A is in reduced row-echelon form.

1 2
1 -1
0 1
102 1
~|0 1 2
01 3

O -

o o

o~ O

o~ O

= O O

W= =

= O O

RQ%RQ—FRl

R3—>R3—R2
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Example LS10. Calculating flows in networks

At each node e require (sum of flows in) = (sum of flows out).

Determine a, b, ¢ and d in the network st
Then

Node 1: 10 = a+ b,

Node 2: a=3+c,

Node 3: c+d =06,

Node 4: b=1+d.
So
a-+ b+ 0c+0d =10, 1 1 0 O (a
a+0b—c+0d=2, which is 1 0 -1 O b
0Oa+0b+c+ d =06, 0 0 1 1 C
0a+b+0c—d=1 01 0 -1/ \d




Start with

/1 1 0
1 0 -1
0 0 1
\0 1 0

Left multiply both sides by
0 1 0 0)

L =1 000 et
0 0 10 5
0 0 0 0/

Left multiply both sides by
1000
0100 to get
0 0 0 1 &
00 1 0

OO O O ==

O O O =

O R = O

= O = O

Q. 0O T L

Q.. 0O T W
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Left multiply both sides by

10 0 0
00 1 0| oo
01 -1 0
00 0 1

Left multiply both sides by

100 O
010 0| o
000 1
001 -1

Left multiply both sides by

to get

O = O =
R O O O

O O O =
OO K

OO O o OO O o

O O O =

o O - O o O = O

O O = O

O = O O

Q. 0 T W

Q. 0O T W
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This is the system

3:9, a= 9 + Od7
b—d=1 " hichis P27 L + 14
c+d=06, = 6 + (—1)d,

0=0, d= 0 + 1d.

where d can be any number. So

( /9 O \ )

Sol(Ax = b) = ¢ (15 +d _11 )d€Q>
L \0 Y }
9 (/0 \ )
1 1

=16 + Q@-span < 1 > .

0 N1/,
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Definition (Transpose of a matrix)

Let A€ M;ys(Q). The transpose of Ais AT € Msy+(Q) given by

(AT = A, foric{l,....;standjc{1,...,t}.

1 2 3 L4
Example M4. If A = then AT = [2 5
4 5 6
3 6
Definition (Trace)
Let A€ M,xn(Q). The trace of A'is
A1r - Arg
TI’(A) — A11+ -+ A, where A= :
Anl Ann
Example M3.
1 2 3
Tr{4 5 6] =1+5+49=15.
7 8 9
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Let n € Z~q. Let E;; be the n x n matrix with 1 in the (/,) entry and 0
elsewhere.

Definition (root matrices, diagonal generators and row reducers)

Let i,j € {1,...,n} with i # j. Let c € Q. The root matrix xj(c) is
xij(c) € Maxn(Q) given by xj(c) =1+ cEj.
Let i € {1,...,n}. Let d € Q with d # 0. The diagonal generator

hi(d) is
h,(d) =1+ (d — ].)E,','.

Let i€ {1,...,n—1} and let c € Q. The row reducer sj(c) is

S,'(C) =1 - E,',' — Ei+1,i+1 + Ei,i+1 + Ei+1,i =+ CEii-
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Row operations

Let
3 -9 I 1 0 54
A= 13 —21 35 and X13(54) =10 1 0
300 —100 200 0 0 1

Left multiplying by x33(54) adds 54 - (row 3) to row 1:

1 0 54\ /3 -9 7
x3(58)A=[0 1 o || 13 -—21 35
0 0 1/ \300 —100 200

16203 —5409 10807
= 13 —21 35
300 —100 200
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Row operations
Let

3 -9 I
A= 13 =21 35
300 —100 200

and h3(6) =

Left multiplying by h3(6) multiplies row 3 by 6:

100\ /3 -9
hs6)A= (0 1 of [ 13 -21
0 0 6

300 —100 200

3 -9 I
=| 13 =21 35
1800 —600 1200

O o ==

2
35

O = O

o O O
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Row operations

Let
3 -9 7 1 0 O
A=113 =21 35 and s(-5)=|0 -5 1
300 —100 200 0 1 O

Left multiplying by s,(—5) moves row 2 to be row 3 and makes row 2
equal to (—5) - (row 2) + (row 3):

1 0 0\ /3 -9 7
s(—=5)-A=[0 -5 1| | 13 —21 35
0 1 0/ \300 —100 200

3 -9 7

— (235 5 25

13 —21 35
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What are the s;j(c) matrices?
In math: Let n € Z~¢ and let Ej; be the n x n matrix with 1 in the (i, )

entry and O elsewhere. For i € {1,....,n—1} and p,q € Z with g # 0
define

si(5) =1—Ei — Eiypiza + Eiip1 — B + £Eiig
g q

In English: si(g) is the n X n matrix with

1s on the diagonal except that the (/, /) enrty is c and the
(i+1,i+ 1) entry is 0, and

all other entries are 0 except that the (/,/ + 1) entry is 1 and the
(i +1,i) entry is 0.
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What are the s;(c) matrices?
By Cartoon: If n =8 and g = % then

(1

1

Note

— ol
O =




We will use the s;(£) (sometimes the 5,-(%)_1 matrices to,
step by step, make lower triangular entries 0.

Make lower triangular entries O in this order

x ok kx k%
(4 * ok ok *\
3 7 % % %
2 6 9 x %
\1 5 8 10 */
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To make the (nonzero) (/,/) entry of the matrix A into 0

In Math: Let g be the (i, )-entry of A and let p be the (i — 1,/) entry
of A. Assume g # 0. Then

A=s_1(2)B,  where B=s_1(2) A

In Cartoon: Suppose

( )

STUFF
A= i-1 0 0 p r t v x , with g # 0.
j 0 0 g s u w y
0 00 z e f g
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In Cartoon: Suppose

(

A= -1 0

i 0

\ 0
Then
where

B= i-1 0 O

i 0 0

0 O

o O O

O O Q

STUFF

OO0 T
N 0 =
® < rc+

R < X

STUFF

r—2s t—2u v—LBw

q q q

, with g # 0.
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In English: Let q be the (i,j) entry of A. If g # 0 then make the (i, )
into 0 as follows. Let p be the (i — 1,/) entry of A Then write

A= 5,-_1(5)8, where

The ith row of A moves up one row
to become the (i — 1)st row of B,

The ith row of B is ((the (i — 1)st row of A)-c(ith row of A)), and

all other rows of B are the same as the corresponding rows fo A.

In hybrid:
A= 5,-_1(5)8, where

(a) I‘OW,'_l(B) = IOW;(A),
(b) rowi(B) = row;_1(A) — crow;(A),
(c) ifjg{i—1,i} then row;(B)=row(A),
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