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Lecture 5: Row operations

Example M6 Find the inverse of A =





1 2 1
→1 →1 1
0 1 3



.

Start with AA−1 = 1 which is




1 2 1
→1 →1 1
0 1 3



A−1 =





1 0 0
0 1 0
0 0 1





Left multiply both sides by





1 0 0
1 1 0
0 0 1



 to get





1 2 1
0 1 2
0 1 3



A−1 =





1 0 0
1 1 0
0 0 1




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Left multiply both sides by





1 0 0
0 1 0
0 →1 1



 to get





1 2 1
0 1 2
0 0 1



A−1 =





1 0 0
1 1 0
→1 →1 1





Left multiply both sides by





1 0 →1
0 1 →2
0 0 1



 to get





1 2 0
0 1 0
0 0 1



A−1 =





2 1 →1
3 3 →2
→1 →1 1





Left multiply both sides by





1 →2 0
0 1 0
0 0 1



 to get





1 0 0
0 1 0
0 0 1



A−1 =





→4 →5 →3
3 3 →2
→1 →1 1





Carefully compare this solution of Example 6 in Topic 2 of the lecture
slides to the solution given below.
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Example 6.

Find the inverse of A =





1 2 1
→1 →1 1
0 1 3



.

Solution:

Form the augmented matrix [A | I3 ] and perform row operations so that
A is in reduced row-echelon form.





1 2 1 1 0 0
→1 →1 1 0 1 0
0 1 3 0 0 1



 R2 → R2 + R1

∼





1 2 1 1 0 0
0 1 2 1 1 0
0 1 3 0 0 1





R3 → R3 → R2
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∼





1 2 1 1 0 0
0 1 2 1 1 0
0 0 1 →1 →1 1





R1 → R1 → R3

R2 → R2 → 2R3

∼





1 2 0 2 1 →1
0 1 0 3 3 →2
0 0 1 →1 →1 1





R1 → R1 → 2R2

∼





1 0 0 →4 →5 3
0 1 0 3 3 →2
0 0 1 →1 →1 1





Hence

A−1 =





→4 →5 3
3 3 →2
→1 →1 1




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Example LS10. Calculating flows in networks

At each node • require (sum of flows in) = (sum of flows out).

Determine a, b, c and d in the network








 






Then
Node 1: 10 = a + b,
Node 2: a = 3 + c ,
Node 3: c + d = 6,
Node 4: b = 1 + d .

So

a + b + 0c + 0d = 10,
a+ 0b → c + 0d = 2,
0a + 0b + c + d = 6,
0a + b + 0c → d = 1

which is









1 1 0 0
1 0 →1 0
0 0 1 1
0 1 0 →1

















a
b
c
d









=









10
3
6
1









.
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Start with








1 1 0 0
1 0 →1 0
0 0 1 1
0 1 0 →1

















a
b
c
d









=









10
3
6
1









.

Left multiply both sides by









0 1 0 0
1 →1 0 0
0 0 1 0
0 0 0 0









to get









1 0 →1 0
0 1 1 0
0 0 1 1
0 1 0 →1

















a
b
c
d









=









3
7
6
1









.

Left multiply both sides by









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









to get









1 0 →1 0
0 1 1 0
0 1 0 →1
0 0 1 1

















a
b
c
d









=









3
7
1
6









.
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Left multiply both sides by








1 0 0 0
0 0 1 0
0 1 →1 0
0 0 0 1









to get









1 0 →1 0
0 1 0 →1
0 0 1 1
0 0 1 1

















a
b
c
d









=









3
1
6
6









.

Left multiply both sides by









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 →1









to get









1 0 →1 0
0 1 0 →1
0 0 1 1
0 0 0 0

















a
b
c
d









=









3
1
6
0









.

Left multiply both sides by








1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1









to get









1 0 0 0
0 1 0 →1
0 0 1 1
0 0 0 0

















a
b
c
d









=









9
1
6
0









.

56



This is the system

a = 9,
b → d = 1,
c + d = 6,

0 = 0,

which is

a = 9 + 0d ,
b = 1 + 1d ,
c = 6 + (→1)d ,
d = 0 + 1d .

where d can be any number. So

Sol(Ax = b) =























9
1
6
0









+ d









0
1
→1
1









∣

∣

∣
d ∈ Q















=









9
1
6
0









+Q-span























0
1
→1
1























.

57



Definition (Transpose of a matrix)

Let A ∈ Mt×s(Q). The transpose of A is AT ∈ Ms×t(Q) given by

(AT )ij = Aji , for i ∈ {1, . . . , s} and j ∈ {1, . . . , t}.

Example M4. If A =



1 2 3
4 5 6



then AT =





1 4
2 5
3 6



.

Definition (Trace)

Let A ∈ Mn×n(Q). The trace of A is

Tr(A) = A11 + · · ·+ Ann where A =







A11 · · · A1n
...

...
An1 · · · Ann







Example M3.

Tr





1 2 3
4 5 6
7 8 9



 = 1 + 5 + 9 = 15.
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Let n ∈ Z>0. Let Eij be the n× n matrix with 1 in the (i , j) entry and 0
elsewhere.

Definition (root matrices, diagonal generators and row reducers)

Let i , j ∈ {1, . . . , n} with i &= j . Let c ∈ Q. The root matrix xij(c) is

xij(c) ∈ Mn×n(Q) given by xij(c) = 1 + cEij .

Let i ∈ {1, . . . , n}. Let d ∈ Q with d &= 0. The diagonal generator
hi(d) is

hi (d) = 1 + (d → 1)Eii .

Let i ∈ {1, . . . , n → 1} and let c ∈ Q. The row reducer si (c) is

si(c) = 1→ Eii → Ei+1,i+1 + Ei ,i+1 + Ei+1,i + cEii .
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Row operations
Let

A =





3 →9 7
13 →21 35
300 →100 200



 and x13(54) =





1 0 54
0 1 0
0 0 1



 .

Left multiplying by x13(54) adds 54 · (row 3) to row 1:

x13(54)A =





1 0 54
0 1 0
0 0 1









3 →9 7
13 →21 35
300 →100 200





=





16203 →5409 10807
13 →21 35
300 →100 200



 .
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Row operations
Let

A =





3 →9 7
13 →21 35
300 →100 200



 and h3(6) =





1 0 0
0 1 0
0 0 6



 .

Left multiplying by h3(6) multiplies row 3 by 6:

h3(6)A =





1 0 0
0 1 0
0 0 6









3 →9 7
13 →21 35
300 →100 200





=





3 →9 7
13 →21 35
1800 →600 1200



 .
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Row operations
Let

A =





3 →9 7
13 →21 35
300 →100 200



 and s2(→5) =





1 0 0
0 →5 1
0 1 0



 .

Left multiplying by s2(→5) moves row 2 to be row 3 and makes row 2
equal to (→5) · (row 2) + (row 3):

s2(→5) · A =





1 0 0
0 →5 1
0 1 0









3 →9 7
13 →21 35
300 →100 200





=





3 →9 7
235 5 25
13 →21 35



 .
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What are the si(c) matrices?
In math: Let n ∈ Z>0 and let Eij be the n× n matrix with 1 in the (i , j)
entry and 0 elsewhere. For i ∈ {1, . . . , n → 1} and p, q ∈ Z with q &= 0
define

si


p
q

)

= 1→ Eii → Ei+1,i+1 + Ei ,i+1 → Ei+1,i +
p
qEi ,i+1.

In English: si
p
q

)

is the n × n matrix with

(a) 1s on the diagonal except that the (i , i) enrty is c and the
(i + 1, i + 1) entry is 0, and

(b) all other entries are 0 except that the (i , i + 1) entry is 1 and the
(i + 1, i) entry is 0.
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What are the si(c) matrices?
By Cartoon: If n = 8 and p

q = 7
12 then

s6


7
12

)

=

























1
1

1
1

1
7
12 1
1 0

1

























Note

s6


7
12

)−1
=

























1
1

1
1

1
0 1
1 → 7

12
1
























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We will use the si (
p
q ) (sometimes the si(

p
q )

−1 matrices to,

step by step, make lower triangular entries 0.

Make lower triangular entries 0 in this order













∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
3 7 ∗ ∗ ∗
2 6 9 ∗ ∗
1 5 8 10 ∗












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To make the (nonzero) (i , j) entry of the matrix A into 0

In Math: Let q be the (i , j)-entry of A and let p be the (i → 1, j) entry
of A. Assume q &= 0. Then

A = si−1
p
q

)

B , where B = si−1
p
q

)−1
A.

In Cartoon: Suppose

A = i−1

i





















STUFF

0 0 p r t v x
0 0 q s u w y
0 0 0 z e f g





















, with q &= 0.
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In Cartoon: Suppose

A = i−1

i





















STUFF

0 0 p r t v x
0 0 q s u w y
0 0 0 z e f g





















, with q &= 0.

Then
A = si−1



p
q

)

B ,

where

B = i−1

i





















STUFF

0 0 q s u w y
0 0 0 r → p

q s t → p
qu v → p

qw x → p
q y

0 0 0 z e f g





















.
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In English: Let q be the (i , j) entry of A. If q &= 0 then make the (i , j)
into 0 as follows. Let p be the (i → 1, j) entry of A Then write

A = si−1


p
q

)

B , where

(a) The ith row of A moves up one row
to become the (i → 1)st row of B ,

(b) The ith row of B is ((the (i → 1)st row of A)-c(ith row of A)), and

(c) all other rows of B are the same as the corresponding rows fo A.

In hybrid:
A = si−1



p
q

)

B , where

(a) rowi−1(B) = rowi (A),

(b) rowi(B) = rowi−1(A)→ p
q rowi (A),

(c) if j &∈ {i → 1, i} then rowj(B) = row(A),
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