
Lecture 4: Solutions of linear systems

If

A =

(

3 1
→1 4

)

and x =

(

x1
x2

)

and b =

(

7
2

)

then

Ax = b is the same as

(

3 1
→1 4

)(

x1
x2

)

=

(

7
2

)

is the same as
(

3x1 + x2
→x1 + 4x2

)

=

(

7
2

)

which is the same as
3x1 + x2 = 7
→x1 + 4x2 = 2
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In general Ax = b looks like







A11 A12 · · · A1n
...

...
...

Am1 Am2 · · · Amn

















x1
x2
...
xn











=











b1
b2
...
bn











.

Definition (Solutions of a linear system)

Let A ∈ Mm×n(Q) and b ∈ Mn×1(Q). The set of solutions of Ax = b is

Sol(Ax = b) =

















x1
...
xn






∈ Mn×1(Q)

∣

∣

∣
Ax = b











.

The system Ax = b is inconsistent if Sol(Ax = b) = ∅.
The system Ax = b is consistent if Sol(Ax = b) $= ∅.
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Example A. If A =

(

1 0
0 1

)

and b =

(

7
2

)

then Sol(Ax = b) =

(

7
2

)

and
x1 + 0x2 = 7,
0x1 + x2 = 2.

has exactly one solution
x1 = 7,
x2 = 2.

If A =

(

1 0
1 0

)

and b =

(

7
2

)

then Sol(Ax = b) = ∅ and

x1 + 0x2 = 7,
x1 + 0x2 = 2.

has no solutions.

If A =

(

1 0
0 0

)

and b =

(

7
0

)

then Sol(Ax = b) =

(

7
c

)

∣

∣

∣
c ∈ Q



,

x1 + 0x2 = 7,
0x1 + 0x2 = 0.

has infinitely many
solutions

x1 = 7,
x2 = c , for any c ∈ Q.
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Example LS2,3&4. If A =

(

2 →1
1 1

)

, x =

(

x
y

)

and b =

(

3
0

)

then

Ax = b is
(

2 →1
1 1

)(

x
y

)

=

(

3
0

)

which is
2x → y = 3,
x + y = 0.

Start with
(

2 →1
1 1

)(

x
y

)

=

(

3
0

)

.

Left multiply both sides by

(

0 1
1 →2

)

to get

(

1 1
0 →3

)(

x
y

)

=

(

0
3

)

.
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Left multiply both sides by

(

0 1
1 →1

3

)

to get

(

1 1
0 1

)(

x
y

)

=

(

0
→1

)

.

Left multiply both sides by

(

1 →1
0 1

)

to get

(

1 0
0 1

)(

x
y

)

=

(

1
→1

)

which is
x = 1,
y = →1.

So Sol(Ax = b) =

(

1
→1

)

(exactly one solution).
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Example LS5&6. Solve the following system of linear equations.

4x → 2y + 5z = 31,

2x → 3y → 2z = 13,

x → 3y + 2z = 11.

In matrix form, this is Ax = b, where

A =





4 →2 5
2 →3 →2
1 →3 2



 , x =





x
y
z



 , b =





31
13
11



 .

Start with




4 →2 5
2 →3 →2
1 →3 2









x
y
z



 =





31
13
11



 .

Left multiply both sides by





1 0 0
0 0 1
0 1 →2



 to get
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



4 →2 5
1 →3 2
0 3 →6









x
y
z



 =





31
11
→9



 .

Left multiply both sides by





0 1 0
1 →4 1
0 0 1



 to get





1 →3 2
0 10 →3
0 3 →6









x
y
z



 =





11
→13
→9



 .

Left multiply both sides by





1 0 0
0 0 1
0 1 →10

3



 to get





1 →3 2
0 3 →6
0 0 17









x
y
z



 =





11
→9
17



 .
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Left multiply both sides by





1 0 0
0 1

3 0
0 0 1

17



 to get





1 →3 2
0 1 →2
0 0 1









x
y
z



 =





11
→3
1



 .

Left multiply both sides by





1 0 0
0 1 2
0 0 1



 to get





1 →3 2
0 1 0
0 0 1









x
y
z



 =





11
→1
1



 .
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Left multiply both sides by





1 0 →2
0 1 0
0 0 1



 to get





1 →3 0
0 1 0
0 0 1









x
y
z



 =





9
→1
1



 .

Left multiply both sides by





1 3 0
0 1 0
0 0 1



 to get





1 0 0
0 1 0
0 0 1









x
y
z



 =





6
→1
1



 , or
x = 6,

y = →1,
z = 1.

So

Sol(Ax = b) =











6
→1
1











(exactly one solution).
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Theorem

If A ∈ GLn(Q) then every linear system of the form Ax = b has a
unique solution, given by

x = A−1b.

So, if A ∈ GLnQ) then

Sol(Ax = b) = {A−1b}, which contains exactly one element.

This is because, by multiplying Ax = b on the left by A−1,

A−1Ax = A−1b, which says x = A−1b.
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Let n ∈ Z>0. Let Eij be the n× n matrix with 1 in the (i , j) entry and 0
elsewhere.

Definition (root matrices, diagonal generators and row reducers)

Let i , j ∈ {1, . . . , n} with i $= j . Let c ∈ Q. The root matrix xij(c) is

xij(c) ∈ Mn×n(Q) given by xij(c) = 1 + cEij .

Let i ∈ {1, . . . , n}. Let d ∈ Q with d $= 0. The diagonal generator
hi(d) is

hi (d) = 1 + (d → 1)Eii .

Let i ∈ {1, . . . , n → 1} and let c ∈ Q. The row reducer si (c) is

si(c) = 1→ Eii → Ei+1,i+1 + Ei ,i+1 + Ei+1,i + cEii .

Theorem (Generators for GLn)

Let A ∈ GLn(Q). Then A can be written as a product of row reducers,
diagonal generators and root matrices.
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The last theorem is really a special case of the following theorem.

Theorem (Greedy normal form)

For r ∈ {1, . . . ,min(s, t)} let

1r = E11 + · · ·+ Err .

Let A ∈ Mt×s(Q). The greedy normal form gives

A = (product of si(c)s) · (product of hi (d)s) · (product of xij(c)s)
· 1r · (product of si (c)s) · (product of xij(c)s).

Corollary (Packaged normal form)

Let A ∈ Mt×s(Q). Then there exist P ∈ GLt(Q) and Q ∈ GLs(Q) and
r ∈ {1, . . . ,min(s, t)} such that

A = P1rQ, where 1r = E11 + E22 + · · ·+ Err .
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Example LS5. Find the greedy normal form of A =





4 →2 5
2 →3 →2
1 →3 2



.

A =





4 →2 5
2 →3 →2
1 →3 2



 = s2(2)





4 →2 5
1 →3 2
0 3 →6





= s2(2)s1(4)





1 →3 2
0 10 →3
0 3 →6



 = s2(2)s1(4)s2(
10
3 )





1 →3 2
0 3 →6
0 0 17





= s2(2)s1(4)s2(
10
3 )h2(3)h3(17)





1 →3 2
0 1 →2
0 0 1





= s2(2)s1(4)s2(
10
3 )h2(3)h3(17)x23(→2)x13(2)x12(→3)





1 0 0
0 1 0
0 0 1





= s2(2)s1(4)s2(
10
3 )h2(3)h3(17)x23(→2)x13(2)x12(→3).
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