

Lecture 25: Projections and orthogonalisation

Definition (Orthogonal and orthonormal sequences.)

Let V be an \mathbb{F} -vector space with an inner product $\langle \cdot, \cdot \rangle: V \times V \rightarrow \mathbb{F}$.

Let $u, v \in V$. The vectors u and v are

orthogonal if $\langle u, v \rangle = 0$.

An *orthogonal sequence* is a sequence (b_1, \dots, b_k) of vectors in V such that

if $i, j \in \{1, \dots, k\}$ and $i \neq j$ then $\langle b_i, b_j \rangle = 0$.

An *orthonormal sequence* is an orthogonal sequence (b_1, \dots, b_k) such that

if $i \in \{1, \dots, k\}$ then $\langle b_i, b_i \rangle = 1$.

An *ordered orthonormal basis of V* is an orthonormal sequence (b_1, \dots, b_k) in V such that B is a basis of V .

Proposition

Assume $B = (b_1, \dots, b_n)$ is an ordered orthonormal basis of V and $x \in V$. Then

$$x = \langle x, b_1 \rangle b_1 + \dots + \langle x, b_n \rangle b_n.$$

Definition (Orthogonal projections.)

Let W be a subspace of V . Let $\{b_1, \dots, b_k\}$ be an orthonormal basis of W . Let $x \in V$. The *orthogonal projection of x onto W* is

$$\text{proj}_W(x) = \langle x, b_1 \rangle b_1 + \dots + \langle x, b_k \rangle b_k.$$

Example IP9,10&11 Let $\langle , \rangle: \mathbb{R}^3 \times \mathbb{R}^3 \rightarrow \mathbb{R}$ be given by

$$\langle (u_1, u_2, u_3), (v_1, v_2, v_3) \rangle = u_1 v_1 + 2u_2 v_2 + u_3 v_3.$$

Let

$$S = \{(1, 1, 1), (1, -1, 1), (1, 0, -1)\}.$$

Then

$$\langle (1, 1, 1), (1, -1, 1) \rangle = 1 - 2 + 1 = 0,$$

$$\langle (1, 1, 1), (1, 0, -1) \rangle = 1 + 0 - 1 = 0,$$

$$\langle (1, -1, 1), (1, 0, -1) \rangle = 1 + 0 - 1 = 0,$$

So S is an orthogonal sequence in \mathbb{R}^3 with respect to \langle , \rangle .

Let

$$b_1 = \frac{1}{\|u\|}u,$$

where $u = (1, 1, 1)$,

$$b_2 = \frac{1}{\|v\|}v,$$

where $v = (1, -1, 1)$,

$$b_3 = \frac{1}{\|w\|}w,$$

where $w = (1, 0, 01)$.

Then

$$b_1 = \frac{1}{2}(1, 1, 1) \quad \text{since} \quad \langle (1, 1, 1), (1, 1, 1) \rangle = 4,$$

$$b_2 = \frac{1}{2}(1, -1, 1) \quad \text{since} \quad \langle (1, -1, 1), (1, -1, 1) \rangle = 4,$$

$$b_3 = \frac{1}{\sqrt{2}}(1, 0, -1) \quad \text{since} \quad \langle (1, 0, -1), (1, 0, -1) \rangle = 2,$$

and $\{b_1, b_2, b_3\}$ is an orthonormal sequence in \mathbb{R}^3 with respect to \langle , \rangle .

Let $x = |1, 1, -1\rangle$ and $c_1, c_2, c_3 \in \mathbb{R}$ such that

$$x = c_1 b_1 + c_2 b_2 + c_3 b_3.$$

Then

$$c_1 = c_1 \langle b_1, b_1 \rangle + 0 + 0 = \langle c_1 b_1 + c_2 b_2 + c_3 b_3, b_1 \rangle = \langle x, b_1 \rangle$$

$$= \langle (1, 1, -1), \frac{1}{2}(1, 1, 1) \rangle = \frac{1}{2}(1 + 2 - 1),$$

$$c_2 = c_2 \langle b_2, b_2 \rangle = \langle c_1 b_1 + c_2 b_2 + c_3 b_3, b_2 \rangle = \langle x, b_2 \rangle$$

$$= \langle (1, 1, -1), \frac{1}{2}(1, -1, 1) \rangle = \frac{1}{2}(1 - 2 - 1),$$

$$c_3 = \langle x, b_3 \rangle = \langle (1, 1, -1), \frac{1}{\sqrt{2}}(1, 0, -1) \rangle = \frac{1}{\sqrt{2}}(1 + 0 + 1) = \frac{2}{\sqrt{2}} = \sqrt{2}.$$

So x is written as a linear combination of the basis elements in the form

$$\begin{aligned} x = (1, 1, -1) &= \langle x, b_1 \rangle b_1 + \langle x, b_2 \rangle b_2 + \langle x, b_3 \rangle b_3 \\ &= 1 \cdot b_1 + (-1) \cdot b_2 + \sqrt{2} b_3 \\ &= (1, 1, 1) - (1, -1, 1) + \sqrt{2}(1, 0, -1). \end{aligned}$$

Example IPA3. Let $V = \mathbb{R}^n$ and let $u \in V$ with $u \neq 0$. Let

$$W = \mathbb{R}\text{-span}\{u\} = \{au \mid a \in \mathbb{R}\}.$$

Then W is a 1-dimensional subspace of V . Let

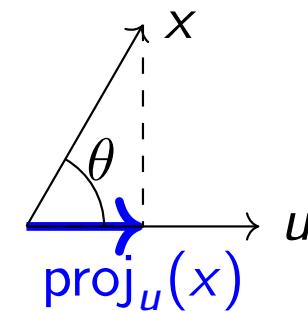
$$b_1 = \frac{1}{\|u\|}u.$$

Then $\{b_1\}$ is an orthonormal basis of W .

Let $x \in V$. Then

$$\text{proj}_W(x) = \langle x, b_1 \rangle b_1 = \langle x, \frac{1}{\|u\|}u \rangle \frac{1}{\|u\|}u$$

$$= \frac{\langle x, u \rangle}{\|u\|^2}u = \text{proj}_u(x).$$



Example IP12. Let $V = \mathbb{R}^3$ and let

$$W = \{|x, y, z\rangle \in \mathbb{R}^3 \mid x + y + z = 0\}.$$

The set

$$\{b_1, b_2\} = \left\{ \frac{1}{\sqrt{2}}|1, -1, 0\rangle, \frac{1}{\sqrt{6}}|1, 1, -2\rangle \right\}$$

is an orthonormal basis of W with respect to the standard inner product on \mathbb{R}^3 .

Let $x = |1, 2, 3\rangle$. Then

$$\begin{aligned} \text{proj}_W(x) &= \langle x | b_1 \rangle b_1 + \langle x | b_2 \rangle b_2 \\ &= \langle 1, 2, 3 | \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0 \rangle \cdot \frac{1}{\sqrt{2}}|1, -1, 0\rangle \\ &\quad + \langle 1, 2, 3 | \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}} \rangle \cdot \frac{1}{\sqrt{6}}|1, 1, -2\rangle \\ &= \left(\frac{1}{\sqrt{2}} - \frac{2}{\sqrt{2}} \right) \frac{1}{\sqrt{2}}|1, -1, 0\rangle + \frac{1}{6}(1 + 2 - 6)|1, 1, -2\rangle \\ &= \left| \frac{-1}{2}, \frac{1}{2}, 0 \right\rangle + \left| \frac{-1}{2}, \frac{-1}{2}, 1 \right\rangle = |-1, 0, 1\rangle. \end{aligned}$$

The shortest distance from x to W is

$$\begin{aligned} \|x - \text{proj}_W(x)\| &= \| |1, 2, 3\rangle - |-1, 0, 1\rangle \| \\ &= \| |2, 2, 2\rangle \| = \sqrt{4 + 4 + 4} = 2\sqrt{3}. \end{aligned}$$

Example IP13. (*The Gram-Schmidt process of orthogonalization*)

Let $V = \mathbb{R}^3$ with the standard inner product. Let $S = \{v_1, v_2, v_3\}$ with

$$v_1 = |1, 1, 1\rangle, \quad v_2 = |0, 1, 1\rangle, \quad v_3 = |0, 0, 1\rangle.$$

Convert S into an orthonormal basis B .

Step 1. Make v_1 into a unit vector. Let

$$b_1 = \frac{1}{\|v_1\|} v_1 = \frac{1}{\sqrt{3}} |1, 1, 1\rangle = \left| \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle$$

and let $S = \{b_1, v_2, v_3\}$.

Step 2. Make v_2 orthogonal to b_1 . Let

$$\begin{aligned} u_2 &= v_2 - \langle v, b_1 \rangle b_1 \\ &= |0, 1, 1\rangle - \frac{2}{\sqrt{3}} \left| \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle \\ &= \left| \frac{-2}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle \end{aligned}$$

and let $S_2 = \{b_1, u_2, v_3\}$.

Step 3. Make u_2 into a unit vector. Let

$$b_2 = \frac{1}{\|u_2\|} u_2 = \frac{1}{\sqrt{6}/3} \left| \frac{-2}{3}, \frac{1}{3}, \frac{1}{3} \right\rangle = \left| \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right\rangle$$

and let $S_3 = \{b_1, b_2, v_3\}$.

Step 4. Make v_3 orthogonal to b_1 and b_2 . Let

$$\begin{aligned} u_3 &= v_3 - \langle v_3, b_1 \rangle b_1 - \langle v_3, b_2 \rangle b_2 \\ &= |0, 0, 1\rangle - \frac{1}{\sqrt{3}} \left| \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle - \frac{1}{\sqrt{6}} \left| \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right\rangle \\ &= \left| \frac{-1}{3} + \frac{2}{6}, \frac{-1}{3} - \frac{1}{6}, 1 - \frac{1}{3} - \frac{1}{6} \right\rangle = |0, \frac{-1}{2}, \frac{1}{2}\rangle. \end{aligned}$$

Step 5. Make u_3 into a unit vector. Let

$$b_3 = \frac{1}{\|u_3\|} u_3 = \frac{1}{\sqrt{2/4}} |0, \frac{-1}{2}, \frac{1}{2}\rangle = |0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\rangle.$$

Then

$B = \{b_1, b_2, b_3\}$ is an orthonormal set.

Proposition

Let $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$ and let V be an \mathbb{F} -vector space with an inner product $\langle \cdot, \cdot \rangle: V \times V \rightarrow \mathbb{F}$. If S is an orthonormal set then S is linearly independent.

Proof. Assume $S = \{v_1, v_2, \dots, v_k\}$ is an orthonormal set.

To show: If $c_1, \dots, c_k \in \mathbb{F}$ and $c_1 v_1 + \dots + c_k v_k = 0$ then $c_1 = 0, c_2 = 0, \dots, c_k = 0$.

Assume $c_1, \dots, c_k \in \mathbb{F}$ and $c_1 v_1 + \dots + c_k v_k = 0$.

To show: If $j \in \{1, \dots, k\}$ then $c_j = 0$.

Assume $j \in \{1, \dots, k\}$. To show: $0 = c_j$.

$$\begin{aligned} 0 &= \langle c_1 v_1 + \dots + c_k v_k, v_j \rangle \\ &= c_1 \langle v_1, v_j \rangle + \dots + c_{j-1} \langle v_{j-1}, v_j \rangle + c_j \langle v_j, v_j \rangle \\ &\quad + c_{j+1} \langle v_{j+1}, v_j \rangle + \dots + c_k \langle v_k, v_j \rangle \\ &= c_1 \cdot 0 + \dots + c_{j-1} \cdot 0 + c_j \langle v_j, v_j \rangle + c_{j+1} \cdot 0 + \dots + c_k \cdot 0 \\ &= c_j \langle v_j, v_j \rangle. \end{aligned}$$

Since $0 = c_j \langle v_j, v_j \rangle$ and $\langle v_j, v_j \rangle \neq 0$ then $c_j = 0$.

So S is linearly independent.