

1.22 Pop quiz on Lecture 22 material

1. Let V be an \mathbb{C} -vector space with an inner product $\langle \cdot, \cdot \rangle: V \times V \rightarrow \mathbb{C}$. Let $B = \{b_1, \dots, b_n\}$ be a basis of V and let A be the Gram matrix of $\langle \cdot, \cdot \rangle$ with respect to the basis B . Let $u = u_1 b_1 + \dots + u_n b_n \in V$ and let $v = v_1 b_1 + \dots + v_n b_n \in V$. Prove that

$$\langle u, v \rangle = [u]_B^t A \overline{[v]_B}.$$

2. The \mathbb{R} -vector space $\mathbb{R}[x]_{\leq 2}$ has basis $B = \{1, x, x^2\}$.

(a) Calculate the Gram matrix A of the standard inner product on $\mathbb{R}[x]_{\leq 2}$ with respect to the basis B .

(b) Let $u = 7 + 3x + 2x^2$ and $v = 5 + x^2$. Calculate

$$[u]_B \quad \text{and} \quad [v]_B \quad \text{and verify that} \quad \langle u, v \rangle = [u]_B^t A [v]_B.$$