

1.21 Pop quiz on Lecture 21 material

1. Let $u = |1+i, 1-i\rangle$ and $v = |i, 1\rangle$ in \mathbb{C}^2 with the standard inner product. Determine (with proof) $\|u\|$, $\|v\|$, $\langle u|v\rangle$, $\langle v|u\rangle$, $d(u, v)$, $\cos(\theta(u, v))$ and $\theta(u, v)$.
2. Let $u = 1$ and $v = x$ in $\mathbb{R}[x]_{\leq 2}$ with the standard inner product. Determine (with proof) $\|u\|$, $\|v\|$, $\langle u|v\rangle$, $\langle v|u\rangle$, $d(u, v)$, $\cos(\theta(u, v))$ and $\theta(u, v)$.
3. Define a function $\langle , \rangle: \mathbb{R}^3 \times \mathbb{R}^3 \rightarrow \mathbb{R}$ by

$$\langle (u_1, u_2, u_3), (v_1, v_2, v_3) \rangle = u_1v_1 - u_2v_2 + u_3v_3.$$

Determine (with proof) whether \langle , \rangle is positive definite.

4. Define a $\langle , \rangle: \mathbb{C}^2 \times \mathbb{C}^2 \rightarrow \mathbb{C}$ by

$$\langle (u_1, u_2), (v_1, v_2) \rangle = iu_1\bar{v_1} - iu_2\bar{v_2}.$$

Determine (with proof) whether \langle , \rangle is positive definite.

5. Define a function $\langle , \rangle: \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}$ by

$$\langle (u_1, u_2), (v_1, v_2) \rangle = u_1v_1 + 2u_2v_2.$$

Determine (with proof) whether \langle , \rangle is positive definite.

6. Let V be an \mathbb{R} -vector space with an inner product.

- (a) Let $u, v \in V$ and suppose that u and v are orthogonal. Prove that

$$\|u + v\|^2 = \|u\|^2 + \|v\|^2.$$

- (b) Give an example of $u, v \in \mathbb{R}^2$ such that $u \neq 0$ and $v \neq 0$ and (with the standard inner product on \mathbb{R}^2),

$$\|u + v\|^2 \neq \|u\|^2 + \|v\|^2.$$

7. Let $A \in M_{n \times n}(\mathbb{C})$ and assume that $A = \bar{A}^T$. Let $\langle , \rangle: \mathbb{C}^n \times \mathbb{C}^n \rightarrow \mathbb{C}$ be given by

$$\langle (u_1, \dots, u_n), (v_1, \dots, v_n) \rangle = u^T A \bar{v}.$$

Prove that \langle , \rangle satisfies all the properties of an inner product except perhaps the positive definiteness.