

1.20 Pop quiz on Lecture 20 material

1. Determine (with proof) whether $A = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$ is Hermitian.
2. Determine (with proof) whether $B = \begin{pmatrix} -i & 0 \\ 0 & -i \end{pmatrix}$ is Hermitian.
3. Determine (with proof) whether $U = \frac{1}{\sqrt{2}} \begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix}$ is unitary.
4. Determine (with proof) whether $Q = \begin{pmatrix} \cos(\theta) & -\sin(\theta)i \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ is orthogonal.
5. Prove that if Q is an orthogonal matrix then $\det(Q)$ is either 1 or -1 .
6. Prove that if $u, v \in \mathbb{R}^n$ and $\langle \cdot, \cdot \rangle$ is the standard inner product on \mathbb{R}^n and Q is an $n \times n$ orthogonal matrix then $\langle Qu, Qv \rangle = \langle u, v \rangle$.
7. Let $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$.
 - (a) Show that A is a symmetric matrix.
 - (b) Find an orthogonal matrix Q and a diagonal matrix D such that $A = QDQ^T$.
8. Let $A = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$.
 - (a) Show that A is a Hermitian matrix.
 - (b) Find an unitary matrix U and a diagonal matrix D such that $A = UDU^T$.