

1.19 Pop quiz on Lecture 19 material

1. Let $A = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$.
 - (a) Find the eigenvalues and eigenvectors of A as an element of $M_{2 \times 2}(\mathbb{C})$.
 - (b) Find $P \in GL_2(\mathbb{Q})$ and a diagonal matrix D such that $PAP^{-1} = D$.
 - (c) Find the characteristic polynomial of A and factor it into linear factors.
2. Let $A = \begin{pmatrix} 2 & -3 & 6 \\ 0 & 5 & -6 \\ 0 & 1 & 0 \end{pmatrix}$.
 - (a) Find the eigenvalues and eigenvectors of A as an element of $M_{3 \times 3}(\mathbb{C})$.
 - (b) Find $P \in GL_2(\mathbb{Q})$ and a diagonal matrix D such that $PAP^{-1} = D$.
 - (c) Find the characteristic polynomial of A and factor it into linear factors.
3. Let $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
 - (a) Find the eigenvalues and eigenvectors of A as an element of $M_{2 \times 2}(\mathbb{R})$.
 - (a) Find the eigenvalues and eigenvectors of A as an element of $M_{2 \times 2}(\mathbb{R})$.
 - (b) Find $P \in GL_2(\mathbb{C})$ and a diagonal matrix D such that $PAP^{-1} = D$.
 - (c) Find the characteristic polynomial of A and factor it into linear factors.
4. Give an example of a 2×2 matrix A that does not have 2 linearly independent eigenvectors as an element of $M_{2 \times 2}(\mathbb{C})$. Be sure you *prove* that the matrix A that you give does not have 2 linearly independent eigenvectors.
5. Give an example of a 2×2 matrix A that is not diagonalizable as an element of $M_{2 \times 2}(\mathbb{C})$. Be sure you *prove* that the matrix A that you give is not diagonalizable.