

Lecture 19: Eigenvalues and eigenvectors

Definition (Eigenvectors and eigenvalues.)

Let $A \in M_n(\mathbb{Q})$.

- An *eigenvalue of A* is an element $\lambda \in \mathbb{Q}$ such that $\ker(A - \lambda) \neq 0$.

Let $A \in M_n(\mathbb{Q})$ and $\lambda \in \mathbb{Q}$.

- An *eigenvector of A of eigenvalue λ* is a nonzero element of $\ker(A - \lambda)$.

Definition (Eigenvectors, eigenvalues and diagonalization.)

Let $f: V \rightarrow V$ be an \mathbb{F} -linear transformation.

- An *eigenvalue of f* is an element $\lambda \in \mathbb{F}$ such that $\ker(f - \lambda) \neq 0$.

Let $f: V \rightarrow V$ be an \mathbb{F} -linear transformation and let $\lambda \in \mathbb{F}$.

- An *eigenvector of f of eigenvalue λ* is a nonzero element of $\ker(f - \lambda)$.

Definition (Eigenvectors and eigenvectors of a matrix.)

Let $A \in M_n(\mathbb{Q})$.

- An *eigenvalue of A* is an element $\lambda \in \mathbb{Q}$ such that $\ker(A - \lambda) \neq 0$.

Let $A \in M_n(\mathbb{Q})$ and $\lambda \in \mathbb{Q}$.

- An *eigenvector of A of eigenvalue λ* is a nonzero element of $\ker(A - \lambda)$.

Theorem (Diagonalization.)

Let $A \in M_{n \times n}(\mathbb{F})$. The matrix A has n linearly independent eigenvectors $\mathbf{p}_1, \dots, \mathbf{p}_n \in \mathbb{F}^n$ with eigenvalues $\lambda_1, \dots, \lambda_n$ if and only if $A = PDP^{-1}$ where,

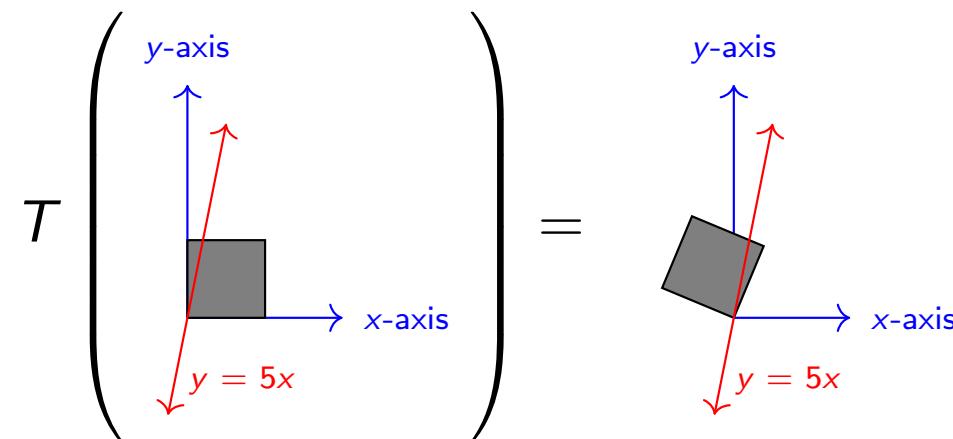
$$P = \begin{pmatrix} | & & | \\ \mathbf{p}_1 & \cdots & \mathbf{p}_n \\ | & & | \end{pmatrix} \quad \text{and} \quad D = \text{diag}(\lambda_1, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & & \lambda_n \end{pmatrix}$$

so that $\mathbf{p}_1, \dots, \mathbf{p}_n$ are the columns of P and D is the diagonal matrix with diagonal entries $\lambda_1, \dots, \lambda_n$.

If \mathbf{v} is an eigenvector of A of eigenvalue λ then $(A - \lambda)\mathbf{v} = 0$ and

$$A\mathbf{v} = \lambda\mathbf{v}.$$

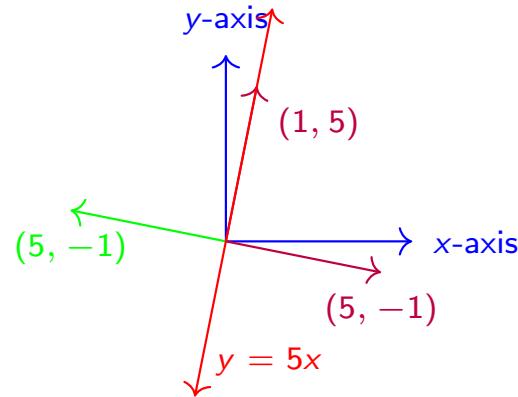
Example EV1. Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the reflection in the line $y = 5x$.



Identify two lines through the origin that are invariant under T and find the image of the direction vectors for each of these lines.

Let

$$B = \{(1, 5), (5, -1)\},$$



One line is the line $y = 5x$ and the other line is the line orthogonal to $y = 5x$. The line $y = 5x$ has slope 5 and the line orthogonal to $y = 5x$ has slope $-\frac{1}{5}$ and equation $y = -\frac{1}{5}x$. The corresponding direction vectors of these lines are $(1, 5)$ and $(1, -\frac{1}{5})$ and

$$T(1, 5) = (1, 5) \quad \text{and} \quad T\left(1, -\frac{1}{5}\right) = -\left(1, -\frac{1}{5}\right) = \left(-1, \frac{1}{5}\right).$$

If $\mathbf{v}_1 = (1, 5)$ and $\mathbf{v}_2 = \left(1, -\frac{1}{5}\right)$ then

$$T\mathbf{v}_1 = 1 \cdot \mathbf{v}_1 \quad \text{and} \quad T\mathbf{v}_2 = (-1) \cdot \mathbf{v}_2.$$

Example EV2,6&9. Find the eigenvalues of $A = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$.

First,

$$\begin{aligned} A - t &= \begin{pmatrix} 1 - t & 4 \\ 1 & 1 - t \end{pmatrix} = \begin{pmatrix} 1 - t & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 - t \\ 0 & 4 - (1 - t)^2 \end{pmatrix} \\ &= \begin{pmatrix} 1 - t & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 - t \\ 0 & -(t + 1)(t - 3) \end{pmatrix} \end{aligned}$$

Case 1: $t + 1 = 0$. Then

$$A + 1 = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad \ker(A + 1) = \text{span} \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}$$

Case 2: $t - 3 = 0$. Then

$$A - 3 = \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad \ker(A - 3) = \text{span} \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}.$$

If $P = \begin{pmatrix} -2 & 2 \\ 1 & 1 \end{pmatrix}$ and $D = \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}$ then $P^{-1} = \frac{1}{4} \begin{pmatrix} -1 & 2 \\ 1 & 2 \end{pmatrix}$

$$\begin{aligned} \text{and } PDP^{-1} &= \begin{pmatrix} -2 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix} \cdot \frac{1}{4} \begin{pmatrix} -1 & 2 \\ 1 & 2 \end{pmatrix} \\ &= \frac{1}{4} \begin{pmatrix} -2 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 3 & 6 \end{pmatrix} \\ &= \frac{1}{4} \begin{pmatrix} 4 & 16 \\ 4 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} = A. \end{aligned}$$

The characteristic polynomial of A is

$$\det(A - t) = \det(D - t) = (-1 - t)(3 - t).$$

Example EV3,4&10. Find the eigenvalues of $A = \begin{pmatrix} 2 & -3 & 6 \\ 0 & 5 & -6 \\ 0 & 1 & 0 \end{pmatrix}$.

Find $\ker(A - t)$ by row reduction:

$$\begin{aligned}
 A - t &= \begin{pmatrix} 2 - t & -3 & 6 \\ 0 & 5 - t & -6 \\ 0 & 1 & 0 - t \end{pmatrix} \\
 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 - t & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 - t & -3 & 6 \\ 0 & 1 & -t \\ 0 & 0 & -6 - (5 - t)(-t) \end{pmatrix} \\
 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 - t & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 - t & 0 & 3(2 - t) \\ 0 & 1 & -t \\ 0 & 0 & -(t^2 - 5t + 6) \end{pmatrix} \\
 &= \begin{pmatrix} 1 & 3 & 0 \\ 0 & 5 - t & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 - t & 0 & 3(2 - t) \\ 0 & 1 & -t \\ 0 & 0 & -(t - 2)(t - 3) \end{pmatrix}.
 \end{aligned}$$

Case 1: $t - 2 = 0$. Then

$$A - 2 = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 5 - 2 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

and

$$\ker(A - 2) = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \right\}.$$

Case 2: $t - 3 = 0$. Then

$$\begin{aligned} A - 3 &= \begin{pmatrix} 1 & 3 & 0 \\ 0 & 5 - 3 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 - 3 & 0 & 3(2 - 3) \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 & -3 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{pmatrix} \end{aligned}$$

and

$$\ker(A - 3) = \text{span} \left\{ \begin{pmatrix} -3 \\ 3 \\ 1 \end{pmatrix} \right\}.$$

Then $A = PDP^{-1}$ where

$$P = \begin{pmatrix} 1 & 0 & -3 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix},$$

$$\text{and } P^{-1} = - \begin{pmatrix} -1 & 0 & 0 \\ -3 & 1 & -1 \\ 6 & -3 & 2 \end{pmatrix}^t = \begin{pmatrix} 1 & 3 & -6 \\ 0 & -1 & 3 \\ 0 & 1 & -2 \end{pmatrix}.$$

The characteristic polynomial of A is

$$\det(A - t) = \det(D - t) = (2 - t)^2(3 - t).$$

Example 5,8&12. As an element of $M_{2\times 2}(\mathbb{R})$, the matrix

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \text{has no eigenvalues and no eigenvectors.}$$

The linear transformation

$$\begin{array}{ccc} T: & \mathbb{R}^2 & \rightarrow \mathbb{R}^2 \\ & v & \mapsto Av \end{array} \quad \text{is a rotation of } \frac{3\pi}{2} \text{ about } (0, 0).$$

As an element of $M_{2\times 2}(\mathbb{C})$, the matrix

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \text{has two eigenvalues, } i \text{ and } -i.$$

$$\ker(A - i) = \text{span} \left\{ \begin{pmatrix} i \\ 1 \end{pmatrix} \right\} \quad \text{and} \quad \ker(A + i) = \text{span} \left\{ \begin{pmatrix} -i \\ 1 \end{pmatrix} \right\}.$$

$\begin{pmatrix} i \\ 1 \end{pmatrix}$ is an eigenvector of eigenvalue i and

$\begin{pmatrix} -i \\ 1 \end{pmatrix}$ is an eigenvector of eigenvalue $-i$.

If

$$P = \begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix} \text{ and } D = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \text{ then } P^{-1} = \frac{1}{-2i} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix}$$

and

$$\begin{aligned} PDP^{-1} &= \begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \cdot \frac{1}{-2i} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix} \\ &= \frac{1}{2}i \begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix} \begin{pmatrix} i & 1 \\ i & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = A. \end{aligned}$$

The characteristic polynomial of A is

$$\det(A - t) = \det(D - t) = (i - t)(-i - t) = t^2 + 1.$$

Example EV11. If $PDP^{-1} = A$ then the columns of P are linearly independent eigenvectors of A . Here is an example where A does not have n linearly independent eigenvectors.

$$\text{If } A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \quad \text{then} \quad A - t = \begin{pmatrix} 1 - t & 2 \\ 0 & 1 - t \end{pmatrix}$$

which has a single row of 0s when $t = 1$.

(The characteristic polynomial of A is $\det(A - t) = (1 - t)^2$.)

$$\ker(A - 1) = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}.$$

Since A does not have two linearly independent eigenvectors then

A is not diagonalizable.