

1.18 Pop quiz on Lecture 18 material

1. Let $t, s \in \mathbb{Z}_{>0}$ and let $A \in M_{t \times s}(\mathbb{Q})$.
 - (a) Carefully define $\ker(A)$.
 - (b) Carefully define $\text{im}(A)$.
 - (c) Carefully define the column space of A .
 - (d) Explain (with proof) the relationship between $\text{im}(A)$ and the column space of A .
2. Let $t, s \in \mathbb{Z}_{>0}$ and let $A \in M_{t \times s}(\mathbb{Q})$. Let $P \in M_{t \times t}(\mathbb{Q})$ be an invertible $t \times t$ matrix and let $Q \in M_{s \times s}(\mathbb{Q})$ be an invertible $s \times s$ matrix.
 - (a) Prove carefully that $\ker(PA) = \ker(A)$.
 - (b) Prove carefully that $\text{im}(AQ) = \text{im}(A)$.
3. Let $t, s \in \mathbb{Z}_{>0}$ and let $A \in M_{t \times s}(\mathbb{Q})$. Let $P \in M_{t \times t}(\mathbb{Q})$ be an invertible $t \times t$ matrix and let $Q \in M_{s \times s}(\mathbb{Q})$ be an invertible $s \times s$ matrix.
 - (a) Prove carefully that $\ker(QA) = Q^{-1} \ker(A)$.
 - (b) Prove carefully that $\text{im}(PA) = P\text{im}(A)$.
4. Let $t, s \in \mathbb{Z}_{>0}$ and let $A \in M_{t \times s}(\mathbb{Q})$. Let $r \in \{1, \dots, \min(s, t)\}$ and let

$$1_r = E_{11} + \dots + E_{rr} \quad \text{in } M_{t \times s}(\mathbb{Q}),$$

where E_{ij} has 1 in the (i, j) entry and 0 elsewhere. Let $e_i \in \mathbb{Q}^s$ be the vector with 1 in the i th entry and 0 elsewhere so that

$$S = \{e_1, \dots, e_s\} \quad \text{is the standard basis of } \mathbb{Q}^s.$$

- (a) Prove carefully that $\ker(1_r) = \mathbb{Q}\text{-span}\{e_{r+1}, \dots, e_s\}$.
- (b) Let $Q \in \text{GL}_s(\mathbb{Q})$ so that Q is an invertible $s \times s$ matrix. Prove carefully that

$$\ker(1_r Q) = \mathbb{Q}\text{-span}\{\text{last } s - r \text{ columns of } Q^{-1}\}.$$

- (c) Prove carefully that $\mathbb{Q}\text{-span}\{\text{last } s - r \text{ columns of } Q^{-1}\}$ is a basis of $\ker(1_r Q)$.

5. Let $t, s \in \mathbb{Z}_{>0}$ and let $A \in M_{t \times s}(\mathbb{Q})$. Let $r \in \{1, \dots, \min(s, t)\}$ and let

$$1_r = E_{11} + \dots + E_{rr} \quad \text{in } M_{t \times s}(\mathbb{Q}),$$

where E_{ij} has 1 in the (i, j) entry and 0 elsewhere. Let $e_i \in \mathbb{Q}^t$ be the vector with 1 in the i th entry and 0 elsewhere so that

$$B = \{e_1, \dots, e_t\} \quad \text{is the standard basis of } \mathbb{Q}^t.$$

- (a) Prove carefully that $\text{im}(1_r) = \mathbb{Q}\text{-span}\{e_1, \dots, e_r\}$.
- (b) Let $P \in \text{GL}_t(\mathbb{Q})$ so that P is an invertible $t \times t$ matrix. Prove carefully that

$$\text{im}(P1_r) = \mathbb{Q}\text{-span}\{\text{first } r \text{ columns of } P\}.$$

- (c) Prove carefully that $\mathbb{Q}\text{-span}\{\text{first } r \text{ columns of } P\}$ is a basis of $\text{im}(P1_r)$.

6. Let $S = \{|1, 3, -1, 1\rangle, |2, 6, 0, 4\rangle, |3, 9, -2, 4\rangle\}$ in \mathbb{R}^4 . Let

$$P = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 1 & 4 & 0 & 1 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}, \quad 1_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- (a) Compute $A = P1_2Q$.
- (b) Show that $\mathbb{Q}\text{-span}(S) = \text{im}(A)$.
- (c) Find a basis of $\text{im}(A)$.
- (d) Find a basis of $\ker(A)$.