

1.17 Pop quiz on Lecture 17 material

1. Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation which is reflection across the y -axis. Fix the unit square to be the square with vertices $|0, 0\rangle, |1, 0\rangle, |1, 1\rangle, |0, 1\rangle$.
 - (a) Draw a picture illustrating the image of the unit square under the transformation T .
 - (b) Determine (with proof) the matrix of the linear transformation T with respect to the basis $S = \{|1, 0\rangle, |0, 1\rangle\}$ of \mathbb{R}^2 .
2. Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation which is projection onto the x axis. Fix the unit square to be the square with vertices $|0, 0\rangle, |1, 0\rangle, |1, 1\rangle, |0, 1\rangle$.
 - (a) Draw a picture illustrating the image of the unit square under the transformation T .
 - (b) Determine (with proof) the matrix of the linear transformation T with respect to the basis $S = \{|1, 0\rangle, |0, 1\rangle\}$ of \mathbb{R}^2 .
3. Let $c \in \mathbb{R}_{>0}$ and let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation which is the shear by a factor of c along the x -axis. Fix the unit square to be the square with vertices $|0, 0\rangle, |1, 0\rangle, |1, 1\rangle, |0, 1\rangle$.
 - (a) Draw a picture illustrating the image of the unit square under the transformation T .
 - (b) Determine (with proof) the matrix of the linear transformation T with respect to the basis $S = \{|1, 0\rangle, |0, 1\rangle\}$ of \mathbb{R}^2 .
4. Let $c \in \mathbb{R}_{>0}$ and let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation which is the shear by a factor of c along the x -axis followed by a reflection across the y -axis. Fix the unit square to be the square with vertices $|0, 0\rangle, |1, 0\rangle, |1, 1\rangle, |0, 1\rangle$.
 - (a) Draw a picture illustrating the image of the unit square under the transformation T .
 - (b) Determine (with proof) the matrix of the linear transformation T with respect to the basis $S = \{|1, 0\rangle, |0, 1\rangle\}$ of \mathbb{R}^2 .
5. Let $c \in \mathbb{R}_{>0}$ and let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation which is stretching of the x -axis by a factor of c . Fix the unit square to be the square with vertices $|0, 0\rangle, |1, 0\rangle, |1, 1\rangle, |0, 1\rangle$.
 - (a) Draw a picture illustrating the image of the unit square under the transformation T .
 - (b) Determine (with proof) the matrix of the linear transformation T with respect to the basis $S = \{|1, 0\rangle, |0, 1\rangle\}$ of \mathbb{R}^2 .
6. Let $\theta \in \mathbb{R}_{[0, 2\pi)}$ and let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation which is rotation by θ (about the origin counterclockwise). Fix the unit square to be the square with vertices $|0, 0\rangle, |1, 0\rangle, |1, 1\rangle, |0, 1\rangle$.
 - (a) Draw a picture illustrating the image of the unit square under the transformation T .
 - (b) Determine (with proof) the matrix of the linear transformation T with respect to the basis $S = \{|1, 0\rangle, |0, 1\rangle\}$ of \mathbb{R}^2 .
7. Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation which is reflection in the line $y = 5x$. Fix the unit square to be the square with vertices $|0, 0\rangle, |1, 0\rangle, |1, 1\rangle, |0, 1\rangle$.
 - (a) Draw a picture illustrating the image of the unit square under the transformation T .
 - (b) Determine (with proof) the matrix of the linear transformation T with respect to the basis $S = \{|1, 0\rangle, |0, 1\rangle\}$ of \mathbb{R}^2 .

8. Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation given by

$$T(|x, y\rangle) = |3x - y, -x + 3y\rangle.$$

Fix the unit square to be the square with vertices $|0, 0\rangle, |1, 0\rangle, |1, 1\rangle, |0, 1\rangle$.

- (a) Draw a picture illustrating the image of the unit square under the transformation T .
- (b) Determine (with proof) the matrix X of the linear transformation T with respect to the basis $S = \{|1, 0\rangle, |0, 1\rangle\}$ of \mathbb{R}^2 .
- (c) Determine (with proof) the transition matrix P between the basis S and the basis $B = \{|1, 1\rangle, |-1, 1\rangle\}$.
- (d) Determine (with proof) the transition matrix Q between the basis B and the basis S .
- (e) Check that P is the inverse of Q .
- (f) Determine (with proof) the matrix Y of the linear transformation T with respect to the basis B .
- (g) Check that $Y = PXP^{-1}$.