

1.14 Pop quiz on Lecture 14 material

1. Let V be a \mathbb{Q} -vector space and let $v_1, v_2, v_3, v_4, v_5 \in V$. Let $S = \{v_1, v_2, v_3, v_4, v_5\}$

Show that $\mathbb{Q}\text{-span}(S)$ is a subspace of V .

2. Let $\mathbb{R}[x]_{\leq 2}$ be the \mathbb{R} -vector space of polynomials of degree ≤ 2 with coefficients in \mathbb{R} .

Is $1 - 2x - x^2 \in \mathbb{R}\text{-span}\{1 + x + x^2, 3 + x^2\}$?

3. Let S be the subset of \mathbb{R}^3 given by

$$S = \{|1, 1, 1\rangle, |2, 2, 2\rangle, |3, 3, 3\rangle\}. \quad \text{Determine } \mathbb{R}\text{-span}(S).$$

4. Let $\mathbb{R}[x]_{\leq 2}$ be the \mathbb{R} -vector space of polynomials of degree ≤ 2 with coefficients in \mathbb{R} . Let S be the subset of $\mathbb{R}[x]_{\leq 2}$ given by

$$S = \{1 + 2x, 1 + 5x + 3x^2, x + x^2\}. \quad \text{Show that } \mathbb{R}\text{-span}(S) = \mathbb{R}[x]_{\leq 2}.$$

5. If $S = \{(1, -1), (2, 4)\}$ a basis of \mathbb{R}^2 .

6. Let S be a subset of $M_{2 \times 2}(\mathbb{R})$ given by

$$S = \left\{ \begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} -2 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 10 \\ 4 & 2 \end{pmatrix} \right\}. \quad \text{is } S \text{ linearly independent?}$$