
Lecture 14: span, linear independence and bases

Definition (Basis and dimension)

Let F be a field and let V be an F-vector space.
Let {v1, v2, . . . , vk} be a subset of V .
An F-linear combination of v1, . . . , vk is an element of the set

F-span{v1, . . . , vk} = {c1v1 + · · · + ckvk | c1, c2, . . . , ck → F}.

The set {v1, . . . , vk} is linearly independent over F if it satisfies:

if c1, . . . , ck → F and c1v1 + · · · + ckvk = 0

then c1 = 0, c2 = 0, . . ., ck = 0.

An F-basis of V is a subset B ⊆ V such that

(a) F-span(B) = V ,

(b) B is linearly independent.

The F-dimension of V is the number of elements of a F-basis B of V .
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Example A9. Let V be a Q-vector space and let v1, v2, v3, v4, v5 → V .
Let S = {v1, v2, v3, v4, v5}. Show that Q-span(S) is a subspace of V .

(a) Since 0 = 0v1 + 0v2 + 0v3 + 0v4 + 0v5 then 0 → Q-span(S).

(b) Assume a = a1v1 + a2v2 + a3v3 + a4v4 + a5v5 → Q-span(S) and
b = b1v1 + b2v2 + b3v3 + b4v4 + b5v5 → Q-span(S). Then

a + b = a1v1 + a2v2 + a3v3 + a4v4 + a5v5

+ b1v1 + b2v2 + b3v3 + b4v4 + b5v5

= (a1 + b1)v1 + (a2 + b2)v2 + (a3 + b3)v3

+ (a4 + b4)v4 + (a5 + b5)v5.

So a + b → Q-span(S).

(c) Assume a = a1v1 + a2v2 + a3v3 + a4v4 + a5v5 → Q-span(S) and
c → Q. Then

ca = c(a1v1 + a2v2 + a3v3 + a4v4 + a5v5)

= ca1v1 + ca2v2 + ca3v3 + ca4v4 + ca5v5 → Q-span(S).

So Q-span(S) is a subspace of V .
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Example V13. In R[x ]!2, is 1− 2x − x2 → R-span{1 + x + x2, 3 + x2}?

By definition R-span{1 + x + x2, 3 + x2}
= {c1(1 + x + x2) + c2(3 + x2) | c1c2 → R}.

So we need to show that there exist c1, c2 → R such that

c1(1 + x + x2) + c2(3 + x2) = 1− 2x − x2.

So we need to show that the system
c1 + 3c2 = 1,
c1 + 0c2 = −2,
c1 + c2 = −1,

has a solution.

The second equation gives c1 = −2 and then c2 = −1− c1 = 1+2 = 3.
Since the equation c1 + 3c2 = 1 also works when c1 = −2 and c2 = 3
then c1 = −2, c2 = 1 is a solution to this system.

Alternatively, the solution can be found by row reduction as follows. In
matrix form the equations are





1 3
1 0
1 1





(

c1
c2

)

=





1
−2
−1



 .
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Left multiply both sides by





1 0 0
0 0 1
0 1 −1



 to get





1 3
1 1
0 −1





(

c1
c2

)

=





1
−1
−1



 .

Left multiply both sides by





0 1 0
1 −1 0
0 0 1



 to get





1 1
0 2
0 −1





(

c1
c2

)

=





−1
2
−1



 .

Left multiply both sides by





1 0 0
0 0 1
0 1 −2



 to get





1 1
0 −1
0 0





(

c1
c2

)

=





−1
−1
0



 .
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Left multiply both sides by





1 0 0
0 −1 0
0 0 1



 to get





1 1
0 1
0 0





(

c1
c2

)

=





−1
1
0



 .

Left multiply both sides by





1 −1 0
0 1 0
0 0 1



 to get





1 0
0 1
0 0





(

c1
c2

)

=





−2
1
0



 .

So c1 = −2 and c2 = 1 is a solution.

So −2(1 + x + x2) + (3 + x2) = 1− 2x − x2.

So 1− 2x − x2 → R-span{1 + x + x2, 3 + x2}.
So 1− 2x − x2 is a linear combination of 1 + x + x2 and 3 + x2 and

1− 2x − x2 → R-span{1 + x + x2, 3 + x2}.
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Example V14. Let S be the subset of R3 given by

S = {(1, 1, 1), (2, 2, 2), (3, 3, 3)}. Determine R-span(S).

In this case

R-span(S) = {c1 |1, 1, 1〉 + c2 |2, 2, 2〉 + c3 |3, 3, 3〉 | c1, c2, c3 → R}
= {c1 |1, 1, 1〉 + 2c2 |1, 1, 1〉 + 3c3 |1, 1, 1〉 | c1, c2, c3 → R}
= {(c1 + 2c2 + 3c3) |1, 1, 1〉 | c1, c2, c3 → R}
= {t |1, 1, 1〉 | t → R}
= {|t, t, t〉 | t → R}.

Here { |1, 1, 1〉 } is a basis of R-span(S) and

dim(R-span(S)) = 1 (even though S has 3 elements).
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Example V16new. Let S be the subset of R[x ]!2 given by

S = {1 + 2x , 1 + 5x + 3x2, x + x2}. Show that span(S) = R[x ]!2.

Proof. By definition

R-span(S) = {c1(1+2x)+c2(1+5x+3x2)+c3(x+x2) | c1, c2, c3 → R}.

To show: (a) R-span(S) ⊆ R3

(b) R3 ⊆ R-span(S).

(a) Since S ⊆ R3 and R3 is closed under addition and scalar
multiplication then R-span(S) ⊆ R[x ]!2.

(b) To show: R[x ]!2 ⊆ span(S).

To show: R-span{1, x , x2} ⊆ span(S).

Since R-span(S) is closed under addition and scalar multiplication,

To show: {1, x , x2} ⊆ R-span(S).
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To show: There exist c1, c2, c3, d1, d2, d3, r1, r2, r3 → R such that

c1(1 + 2x) + c2(1 + 5x + 3x2) + c3(x + x2) = 1 + 0x + x2,

d1(1 + 2x) + d2(1 + 5x + 3x2) + d3(x + x2) = 0 + x + 0x2,

r1(1 + 2x) + r2(1 + 5x + 3x2) + r3(x + x2) = 0 + 0x + x2.

To show: There exist c1, c2, c3, d1, d2, d3, r1, r2, r3 → R such that





1 1 0
2 5 1
0 3 1









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 0 0
0 1 0
0 0 1



 .

Multiply both sides by





1 0 0
−2 1 0
0 0 1



 to get





1 1 0
0 3 1
0 3 1









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 −2 0
0 1 0
0 0 1



 .
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Multiply both sides by





1 0 0
0 1 0
0 −1 1



 to get





1 1 0
0 3 1
0 0 0









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 −2 0
0 1 0
0 −1 1



 .

Since the bottom row on the left hand side is all 0 and the bottom row
on the right hand sides is not all 0 then there do not exist
c1, c2, c3, d1, d2, d3, r1, r2, r3 → R such that





1 1 0
2 5 1
0 3 1









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 0 0
0 1 0
0 0 1



 .

So {1, x , x2} %⊆ R-span(S).

So span(S) %= R[x ]!2.
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Example V23. Is S = {(1,−1), (2, 4)} a basis of R2?
Let

A =

(

1 2
−1 4

)

. Then A−1 = 1
6

(

4 −2
1 1

)

=

(

2
3 −1

3
1
6

1
6

)

.

So
(

1 2
−1 4

)(

c1
c2

)

=

(

0
0

)

gives

(

c1
c2

)

=

(

0
0

)

.

So S is linearly independent.

If |a, b〉 → R2 then |a, b〉 = c1|1,−1〉 + c2|2, 4〉, where
(

c1
c2

)

=

(

2
3 −1

3
1
6

1
6

)(

a
b

)

=

(

2
3a −

1
3b

1
6a +

1
6b

)

.

So R2 ⊆ R-span(S). Since S ⊆ R2 and R2 is closed under addition and
scalar multiplication then R-span(S) ⊆ R2. So R-span(S) = R2.

So S is a basis of R2.
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Example V21. Let S be the subset of M2(R) given by

S =

{(

1 3
1 1

)

,

(

−2 1
1 −1

)

,

(

1 10
4 2

)}

. Is S linearly independent?

To show: If c1, c2, c3 → R and

c1

(

1 3
1 1

)

+ c2

(

−2 1
1 −1

)

+ c3

(

1 10
4 2

)

=

(

0 0
0 0

)

then c1 = 0, c2 = 0, c3 = 0.

Suppose an oracle tells you to try (or you guess) c1 = −3, c2 = 1,
c3 = −1 and then you verify that

−3

(

1 3
1 1

)

+

(

−2 1
1 −1

)

−
(

1 10
4 2

)

= −3

(

1 3
1 1

)

+

(

−3 −9
−3 −3

)

=

(

0 0
0 0

)

.

This means that you don’t have to have c1, c2 and c3 all 0 to get a zero
linear combination.
So S is not linearly independent.
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If you have no oracle, or are not a good guesser, then proceed as follows.

Assume c1, c2, c3 → R and

c1

(

1 3
1 1

)

+ c2

(

−2 1
1 −1

)

+ c3

(

1 10
4 2

)

=

(

0 0
0 0

)

.

Then

c1 − 2c2 + c3 = 0,
3c1 + c2 + 10c3 = 0,

c1 + c2 + 4c3 = 0,
c1 − c2 + 2c3 = 0,

or, equivalently,









1 −2 1
3 1 10
1 1 4
1 −1 2













c1
c2
c3



 =





0
0
0



 .

Left multiply both sides by









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 −1









to get









1 −2 1
3 1 10
1 −1 2
0 2 2













c1
c2
c3



 =





0
0
0



 .
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Left multiply both sides by








1 0 0 0
0 0 1 0
0 1 −3 0
0 0 0 1









to get









1 −2 1
1 −1 2
0 4 4
0 2 2













c1
c2
c3



 =





0
0
0



 .

Left multiply both sides by









0 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1









to get









1 −1 2
0 −1 −1
0 4 4
0 2 2













c1
c2
c3



 =





0
0
0



 .

Left multiply both sides by








1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 −2









to get









1 −1 2
0 −1 −1
0 2 2
0 0 0













c1
c2
c3



 =





0
0
0



 .
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Left multiply both sides by








1 0 0 0
0 0 1 0
0 1 1

2 0
0 0 0 1









to get









1 −1 2
0 2 2
0 0 0
0 0 0













c1
c2
c3



 =





0
0
0



 .

Left multiply both sides by








1 0 0 0
0 1

2 0 0
0 0 1 0
0 0 0 1









to get









1 −1 2
0 1 1
0 0 0
0 0 0













c1
c2
c3



 =





0
0
0



 .

Left multiply both sides by








1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1









to get









1 0 3
0 1 1
0 0 0
0 0 0













c1
c2
c3



 =





0
0
0



 .
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This gives the system

c1 + 3c3 = 0,
c2 + c3 = 0,

which is
c1 = −3c3
c2 = −c3,
c3 = c3,

which has solutions






c3





−3
−1
1





∣

∣

∣
c3 → R







= R-span











−3
−1
1











.

So c1 = 0, c2 = 0, c3 = 0 is not the only solution.
This means that you don’t have to have c1, c2 and c3 all 0 to get a zero
linear combination.
So S is not linearly independent.
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