

Lecture 14: span, linear independence and bases

Definition (Basis and dimension)

Let \mathbb{F} be a field and let V be an \mathbb{F} -vector space.

Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a subset of V .

An \mathbb{F} -linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_k$ is an element of the set

$$\mathbb{F}\text{-span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\} = \{c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k \mid c_1, c_2, \dots, c_k \in \mathbb{F}\}.$$

The set $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is *linearly independent over \mathbb{F}* if it satisfies:

$$\text{if } c_1, \dots, c_k \in \mathbb{F} \text{ and } c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k = 0$$

$$\text{then } c_1 = 0, c_2 = 0, \dots, c_k = 0.$$

An \mathbb{F} -basis of V is a subset $B \subseteq V$ such that

- (a) $\mathbb{F}\text{-span}(B) = V$,
- (b) B is linearly independent.

The \mathbb{F} -dimension of V is the number of elements of a \mathbb{F} -basis B of V .

Example A9. Let V be a \mathbb{Q} -vector space and let $v_1, v_2, v_3, v_4, v_5 \in V$. Let $S = \{v_1, v_2, v_3, v_4, v_5\}$. Show that $\mathbb{Q}\text{-span}(S)$ is a subspace of V .

(a) Since $0 = 0v_1 + 0v_2 + 0v_3 + 0v_4 + 0v_5$ then $0 \in \mathbb{Q}\text{-span}(S)$.

(b) Assume $a = a_1 v_1 + a_2 v_2 + a_3 v_3 + a_4 v_4 + a_5 v_5 \in \mathbb{Q}\text{-span}(S)$ and $b = b_1 v_1 + b_2 v_2 + b_3 v_3 + b_4 v_4 + b_5 v_5 \in \mathbb{Q}\text{-span}(S)$. Then

$$\begin{aligned} a + b &= a_1 v_1 + a_2 v_2 + a_3 v_3 + a_4 v_4 + a_5 v_5 \\ &\quad + b_1 v_1 + b_2 v_2 + b_3 v_3 + b_4 v_4 + b_5 v_5 \\ &= (a_1 + b_1) v_1 + (a_2 + b_2) v_2 + (a_3 + b_3) v_3 \\ &\quad + (a_4 + b_4) v_4 + (a_5 + b_5) v_5. \end{aligned}$$

So $a + b \in \mathbb{Q}\text{-span}(S)$.

(c) Assume $a = a_1 v_1 + a_2 v_2 + a_3 v_3 + a_4 v_4 + a_5 v_5 \in \mathbb{Q}\text{-span}(S)$ and $c \in \mathbb{Q}$. Then

$$\begin{aligned} ca &= c(a_1 v_1 + a_2 v_2 + a_3 v_3 + a_4 v_4 + a_5 v_5) \\ &= ca_1 v_1 + ca_2 v_2 + ca_3 v_3 + ca_4 v_4 + ca_5 v_5 \in \mathbb{Q}\text{-span}(S). \end{aligned}$$

So $\mathbb{Q}\text{-span}(S)$ is a subspace of V .

Example V13. In $\mathbb{R}[x]_{\leq 2}$, is $1 - 2x - x^2 \in \mathbb{R}\text{-span}\{1 + x + x^2, 3 + x^2\}$?

By definition $\mathbb{R}\text{-span}\{1 + x + x^2, 3 + x^2\}$
 $= \{c_1(1 + x + x^2) + c_2(3 + x^2) \mid c_1, c_2 \in \mathbb{R}\}.$

So we need to show that there exist $c_1, c_2 \in \mathbb{R}$ such that

$$c_1(1 + x + x^2) + c_2(3 + x^2) = 1 - 2x - x^2.$$

$$c_1 + 3c_2 = 1,$$

So we need to show that the system $c_1 + 0c_2 = -2$, has a solution.

$$c_1 + c_2 = -1,$$

The second equation gives $c_1 = -2$ and then $c_2 = -1 - c_1 = 1 + 2 = 3$.

Since the equation $c_1 + 3c_2 = 1$ also works when $c_1 = -2$ and $c_2 = 3$ then $c_1 = -2, c_2 = 1$ is a solution to this system.

Alternatively, the solution can be found by row reduction as follows. In matrix form the equations are

$$\begin{pmatrix} 1 & 3 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}.$$

Left multiply both sides by

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} \text{ to get } \begin{pmatrix} 1 & 3 \\ 1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}.$$

Left multiply both sides by

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ to get } \begin{pmatrix} 1 & 1 \\ 0 & 2 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}.$$

Left multiply both sides by

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix} \text{ to get } \begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}.$$

Left multiply both sides by

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{to get} \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

Left multiply both sides by

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{to get} \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}.$$

So $c_1 = -2$ and $c_2 = 1$ is a solution.

So $-2(1 + x + x^2) + (3 + x^2) = 1 - 2x - x^2$.

So $1 - 2x - x^2 \in \mathbb{R}\text{-span}\{1 + x + x^2, 3 + x^2\}$.

So $1 - 2x - x^2$ is a linear combination of $1 + x + x^2$ and $3 + x^2$ and

$1 - 2x - x^2 \in \mathbb{R}\text{-span}\{1 + x + x^2, 3 + x^2\}$.

□

Example V14. Let S be the subset of \mathbb{R}^3 given by

$$S = \{(1, 1, 1), (2, 2, 2), (3, 3, 3)\}. \quad \text{Determine } \mathbb{R}\text{-span}(S).$$

In this case

$$\begin{aligned}\mathbb{R}\text{-span}(S) &= \{c_1 |1, 1, 1\rangle + c_2 |2, 2, 2\rangle + c_3 |3, 3, 3\rangle \mid c_1, c_2, c_3 \in \mathbb{R}\} \\ &= \{c_1 |1, 1, 1\rangle + 2c_2 |1, 1, 1\rangle + 3c_3 |1, 1, 1\rangle \mid c_1, c_2, c_3 \in \mathbb{R}\} \\ &= \{(c_1 + 2c_2 + 3c_3) |1, 1, 1\rangle \mid c_1, c_2, c_3 \in \mathbb{R}\} \\ &= \{t |1, 1, 1\rangle \mid t \in \mathbb{R}\} \\ &= \{|t, t, t\rangle \mid t \in \mathbb{R}\}.\end{aligned}$$

Here $\{ |1, 1, 1\rangle \}$ is a basis of $\mathbb{R}\text{-span}(S)$ and

$$\dim(\mathbb{R}\text{-span}(S)) = 1 \quad (\text{even though } S \text{ has 3 elements}).$$

□

Example V16new. Let S be the subset of $\mathbb{R}[x]_{\leq 2}$ given by

$$S = \{1 + 2x, 1 + 5x + 3x^2, x + x^2\}. \quad \text{Show that } \text{span}(S) = \mathbb{R}[x]_{\leq 2}.$$

Proof. By definition

$$\mathbb{R}\text{-span}(S) = \{c_1(1+2x) + c_2(1+5x+3x^2) + c_3(x+x^2) \mid c_1, c_2, c_3 \in \mathbb{R}\}.$$

To show: (a) $\mathbb{R}\text{-span}(S) \subseteq \mathbb{R}^3$
(b) $\mathbb{R}^3 \subseteq \mathbb{R}\text{-span}(S)$.

(a) Since $S \subseteq \mathbb{R}^3$ and \mathbb{R}^3 is closed under addition and scalar multiplication then $\mathbb{R}\text{-span}(S) \subseteq \mathbb{R}[x]_{\leq 2}$.

(b) To show: $\mathbb{R}[x]_{\leq 2} \subseteq \text{span}(S)$.

To show: $\mathbb{R}\text{-span}\{1, x, x^2\} \subseteq \text{span}(S)$.

Since $\mathbb{R}\text{-span}(S)$ is closed under addition and scalar multiplication,

To show: $\{1, x, x^2\} \subseteq \mathbb{R}\text{-span}(S)$.

To show: There exist $c_1, c_2, c_3, d_1, d_2, d_3, r_1, r_2, r_3 \in \mathbb{R}$ such that

$$c_1(1 + 2x) + c_2(1 + 5x + 3x^2) + c_3(x + x^2) = 1 + 0x + x^2,$$

$$d_1(1 + 2x) + d_2(1 + 5x + 3x^2) + d_3(x + x^2) = 0 + x + 0x^2,$$

$$r_1(1 + 2x) + r_2(1 + 5x + 3x^2) + r_3(x + x^2) = 0 + 0x + x^2.$$

To show: There exist $c_1, c_2, c_3, d_1, d_2, d_3, r_1, r_2, r_3 \in \mathbb{R}$ such that

$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & 5 & 1 \\ 0 & 3 & 1 \end{pmatrix} \begin{pmatrix} c_1 & d_1 & r_1 \\ c_2 & d_2 & r_2 \\ c_3 & d_3 & r_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Multiply both sides by

$$\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ to get } \begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 3 & 1 \end{pmatrix} \begin{pmatrix} c_1 & d_1 & r_1 \\ c_2 & d_2 & r_2 \\ c_3 & d_3 & r_3 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Multiply both sides by

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \text{ to get } \begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} c_1 & d_1 & r_1 \\ c_2 & d_2 & r_2 \\ c_3 & d_3 & r_3 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}.$$

Since the bottom row on the left hand side is all 0 and the bottom row on the right hand sides is not all 0 then there *do not exist* $c_1, c_2, c_3, d_1, d_2, d_3, r_1, r_2, r_3 \in \mathbb{R}$ such that

$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & 5 & 1 \\ 0 & 3 & 1 \end{pmatrix} \begin{pmatrix} c_1 & d_1 & r_1 \\ c_2 & d_2 & r_2 \\ c_3 & d_3 & r_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

So $\{1, x, x^2\} \not\subseteq \mathbb{R}\text{-span}(S)$.

So $\text{span}(S) \neq \mathbb{R}[x]_{\leq 2}$. □

Example V23. Is $S = \{(1, -1), (2, 4)\}$ a basis of \mathbb{R}^2 ?

Let

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}. \quad \text{Then} \quad A^{-1} = \frac{1}{6} \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{6} & \frac{1}{6} \end{pmatrix}.$$

So

$$\begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{gives} \quad \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

So S is linearly independent.

If $|a, b\rangle \in \mathbb{R}^2$ then $|a, b\rangle = c_1|1, -1\rangle + c_2|2, 4\rangle$, where

$$\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \frac{2}{3}a - \frac{1}{3}b \\ \frac{1}{6}a + \frac{1}{6}b \end{pmatrix}.$$

So $\mathbb{R}^2 \subseteq \mathbb{R}\text{-span}(S)$. Since $S \subseteq \mathbb{R}^2$ and \mathbb{R}^2 is closed under addition and scalar multiplication then $\mathbb{R}\text{-span}(S) \subseteq \mathbb{R}^2$. So $\mathbb{R}\text{-span}(S) = \mathbb{R}^2$.

So S is a basis of \mathbb{R}^2 .

Example V21. Let S be the subset of $M_2(\mathbb{R})$ given by

$$S = \left\{ \begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} -2 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 10 \\ 4 & 2 \end{pmatrix} \right\}. \quad \text{Is } S \text{ linearly independent?}$$

To show: If $c_1, c_2, c_3 \in \mathbb{R}$ and

$$c_1 \begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix} + c_2 \begin{pmatrix} -2 & 1 \\ 1 & -1 \end{pmatrix} + c_3 \begin{pmatrix} 1 & 10 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

then $c_1 = 0, c_2 = 0, c_3 = 0$.

Suppose an oracle tells you to try (or you guess) $c_1 = -3, c_2 = 1, c_3 = -1$ and then you verify that

$$\begin{aligned} -3 \begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} -2 & 1 \\ 1 & -1 \end{pmatrix} - \begin{pmatrix} 1 & 10 \\ 4 & 2 \end{pmatrix} &= -3 \begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} -3 & -9 \\ -3 & -3 \end{pmatrix} \\ &= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}. \end{aligned}$$

This means that you don't have to have c_1, c_2 and c_3 all 0 to get a zero linear combination.

So S is not linearly independent.

If you have no oracle, or are not a good guesser, then proceed as follows.

Assume $c_1, c_2, c_3 \in \mathbb{R}$ and

$$c_1 \begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix} + c_2 \begin{pmatrix} -2 & 1 \\ 1 & -1 \end{pmatrix} + c_3 \begin{pmatrix} 1 & 10 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Then

$$\begin{aligned} c_1 - 2c_2 + c_3 &= 0, \\ 3c_1 + c_2 + 10c_3 &= 0, \\ c_1 + c_2 + 4c_3 &= 0, \\ c_1 - c_2 + 2c_3 &= 0, \end{aligned} \quad \text{or, equivalently,} \quad \begin{pmatrix} 1 & -2 & 1 \\ 3 & 1 & 10 \\ 1 & 1 & 4 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Left multiply both sides by

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix} \quad \text{to get} \quad \begin{pmatrix} 1 & -2 & 1 \\ 3 & 1 & 10 \\ 1 & -1 & 2 \\ 0 & 2 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Left multiply both sides by

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ to get } \begin{pmatrix} 1 & -2 & 1 \\ 1 & -1 & 2 \\ 0 & 4 & 4 \\ 0 & 2 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Left multiply both sides by

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ to get } \begin{pmatrix} 1 & -1 & 2 \\ 0 & -1 & -1 \\ 0 & 4 & 4 \\ 0 & 2 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Left multiply both sides by

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{pmatrix} \text{ to get } \begin{pmatrix} 1 & -1 & 2 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Left multiply both sides by

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ to get } \begin{pmatrix} 1 & -1 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Left multiply both sides by

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ to get } \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Left multiply both sides by

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ to get } \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

This gives the system

$$\begin{aligned} c_1 + 3c_3 &= 0, & c_1 &= -3c_3 \\ c_2 + c_3 &= 0, & c_2 &= -c_3, \\ & & c_3 &= c_3, \end{aligned}$$

which has solutions

$$\left\{ c_3 \begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix} \mid c_3 \in \mathbb{R} \right\} = \mathbb{R}\text{-span} \left\{ \begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix} \right\}.$$

So $c_1 = 0$, $c_2 = 0$, $c_3 = 0$ is not the only solution.

This means that you don't have to have c_1 , c_2 and c_3 all 0 to get a zero linear combination.

So S is not linearly independent.