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Lecture 12: Vector spaces and linear transformations

A field is a number system F that is similar to Q, R and C

(the precise definition is given on slide 139-140).

The number systems Q, R and C are all fields. There are some ‘more
exotic’ fields like finite fields. For example, if p is a prime number then
the p-clock number system Fp is a finite field.

The world of F-vector spaces works for any field F. But, the properties
depend on F. For example, with dimension of a vector space

The R-dimension of R3 is 3.

The C-dimension of C3 is 3.

The R-dimension of C3 is 6.

The Q-dimension of R3 is →.

We often write ‘Let F be a field’. You are encouraged to think of F as
R or Q (or whatever your favourite field is).

Later we may explore some cool applications of vector spaces that use
finite fields (codes, fast Fourier transform, etc.).
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Definition (F-vector space)

Let F be a field. A F-vector space, or F-module, is a set V with
functions

V × V → V
(v1, v2) $→ v1 + v2

and
F× V → V
(c , v) $→ cv

(addition and scalar multiplication) such that

(a) If v1, v2, v3 ∈ V then (v1 + v2) + v3 = v1 + (v2 + v3),

(b) There exists 0 ∈ V such that if v ∈ V then 0 + v = v .

(c) If v ∈ V then there exists −v ∈ V such that v + (−v) = 0.

(d) If v1, v2 ∈ V then v1 + v2 = v2 + v1,

(e) If c ∈ F and v1, v2 ∈ V then c(v1 + v2) = cv1 + cv2,

(f) If c1, c2 ∈ F and v ∈ V then (c1 + c2)v = c1v + c2v ,

(g) If c1, c2 ∈ F and v ∈ V then c1(c2v) = (c1c2)v ,

(h) If v ∈ V then 1v = v .
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Linear transformations are for comparing vector spaces.

Definition
Let F be a field and let V and W be F-vector spaces. An F-linear
transformation from V to W is a function f : V → W such that

(a) If v1, v2 ∈ V then f (v1 + v2) = f (v1) + f (v2),

(b) If c ∈ F and v ∈ V then f (cv) = cf (v).

One vector space can be a subspace of another.

Definition (Subspace)

Let V be an F-vector space. A subspace of W is a subset W ⊆ V such
that

(a) 0 ∈ W ,

(b) If w1,w2 ∈ W then w1 + w2 ∈ W ,

(c) If w ∈ W and c ∈ F then cw ∈ W .

133



Definition (Basis and dimension)

Let F be a field and let V be an F-vector space.
Let {v1, v2, . . . , vk} be a subset of V .
An F-linear combination of v1, . . . , vk is an element of the set

F-span{v1, . . . , vk} = {c1v1 + · · · + ckvk | c1, c2, . . . , ck ∈ F}.

The set {v1, . . . , vk} is linearly independent over F if it satisfies:

if c1, . . . , ck ∈ F and c1v1 + · · · + ckvk = 0

then c1 = 0, c2 = 0, . . ., ck = 0.

An F-basis of V is a subset B ⊆ V such that

(a) F-span(B) = V ,

(b) B is linearly independent.

The F-dimension of V is the number of elements of a F-basis B of V .
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Favourite vector spaces and favourite bases

1. Rn = {|a1, a2, . . . , an〉 | a1, a2, . . . , an ∈ R} = Mn×1(R) has basis

{e1, e2, . . . , en}, where ei = |0, . . . , 0, 1, 0, . . . , 0〉,

has 1 in the ith entry and 0 elsewhere.

2. Mm×n(R) has basis

{Eij | i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}},

where Eij is the matrix with 1 in the (i , j) entry and 0 elsewhere.

3. R[x ]!n = {a0 + a1x + · · ·+ anxn | a0, a1, . . . , an ∈ R}

has basis {1, x , x2, . . . , xn}.

4. The vector space of polynomials with coefficients in R is

R[x ] = R-span{1, x , x2, x3, . . .} which has basis {1, x , x2, x3, . . .}.
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Example V22. Let v1, v2, v3, v4 ∈ R3 be given by

v1 = |1, 2, 3〉, v2 = |3, 6, 9〉, v3 = |−1, 0,−2〉, v4 = |1, 4, 4〉.

(a) Is {v1, v2, v3, v4} linearly independent?

(b) Express v2 and v4 as linear combinations of v1 and v3.

(c) Is {v1, v3} linearly independent?

(a) Since v2 = 3v1 then 0 = 3v1 − v2 = 3v1 − v2 + 0v3 +−v4.
So c1 = 3, c2 = −1, c3 = 0, c4 = 0 is a case that gives
c1v1 + c2v2 + c3v3 + c4v4 = 0.
So {v1, v2, v3, v4} is not linearly independent.

(b) Since v2 = 3v1 + 0v3 then v2 ∈ R-span{v1, v3}.
Since v1 + v3 = (0, 2, 1) and v1 + |0, 2, 1〉 = |1, 4, 4〉.
So v4 = 2v1 + v3. So v4 ∈ R-span{v1, v3}.
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(c) To show: If c1, c2 ∈ R and c1|1, 2, 3〉 + c2|−1, 0, 2〉 = |0, 0, 0〉
then c1 = 0 and c2 = 0.

Assume c1, c2 ∈ R and c1|1, 2, 3〉 + c2|−1, 0, 2〉 = |0, 0, 0〉.
Then

c1 − c2 = 0,
2c1 + 0c2 = 0,
3c1 + 2c2 = 0.

The first equation gives c1 = c2 and the second equation gives 2c1 = 0
so that c2 = c1 = 0. This system has

only one solution: c1 = 0, c2 = 0.

So {v1, v3} is linearly independent.
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A subspace of R2 is a subset L ⊆ R2 such that

(a) 0 ∈ L,

(b) If w1,w2 ∈ L then w1 + w2 ∈ L,

(c) If w ∈ L and c ∈ R then cw ∈ L.

Example V7. Is the line L = {|x , y〉 ∈ R2 | y = 2x + 1} a subspace of
R2?

Since 0 = |0, 0〉 and 0 )= 2 · 0 + 1 then 0 )∈ L.
So L is not a subspace of R2.
Example A8. Is the line L = {|x , y〉 ∈ R2 | y = 2x} a subspace of R2?
Since |0, 0〉 = |0, 2 · 0〉 then |0, 0〉 ∈ L.
Assume |a, 2a〉, |b, 2b〉 ∈ L. Then

|a, 2a〉+ |b, 2b〉 = |(a + b), 2(a + b)〉 ∈ L.

Assume |a, 2a〉 ∈ L and c ∈ R. Then

c · |a, 2a〉 = |(ca), 2(ca)〉 ∈ L.

So L is a subspace of R2.
138



Definition (Field)

A field is a set F with functions

F× F −→ F

(a, b) $−→ a + b
and

F× F −→ F

(a, b) $−→ ab

such that

(Fa) If a, b, c ∈ F then (a + b) + c = a + (b + c),

(Fb) If a, b ∈ F then a + b = b + a,

(Fc) There exists 0 ∈ F such that

if a ∈ F then 0 + a = a and a + 0 = a,

(Fd) If a ∈ F then there exists −a ∈ F such that a + (−a) = 0 and
(−a) + a = 0,

(Fe) If a, b, c ∈ F then (ab)c = a(bc),
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Definition (Field continued)

(Ff) If a, b, c ∈ F then

(a + b)c = ac + bc and c(a + b) = ca + cb,

(Fg) There exists 1 ∈ F such that

if a ∈ F then 1 · a = a and a · 1 = a,

(Fh) If a ∈ F and a )= 0 then there exists a−1 ∈ F such that aa−1 = 1
and a−1a = 1,

(Fi) If a, b ∈ F then ab = ba.
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