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Lecture 12: Vector spaces and linear transformations

A field is a number system IF that is similar to Q, R and C
(the precise definition is given on slide 139-140).

The number systems Q, R and C are all fields. There are some ‘more
exotic’ fields like finite fields. For example, if p is a prime number then
the p-clock number system IF, is a finite field.

The world of F-vector spaces works for any field IF. But, the properties
depend on [F. For example, with dimension of a vector space

The R-dimension of R3 is 3.
The C-dimension of C3 is 3.
The R-dimension of C3 is 6.
The Q-dimension of R3 is oo.

We often write ‘Let IF be a field". You are encouraged to think of [F as
R or Q (or whatever your favourite field is).

Later we may explore some cool applications of vector spaces that use

finite fields (codes, fast Fourier transform, etc.).
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Definition (IF-vector space)
Let I be a field. A [F-vector space, or F-module, is a set V with
functions

VxV — V nd FxV — V
(vi,v2) — wvi+w (c,v) — cv

(addition and scalar multiplication) such that

If c1,c0 € F and v € V then ¢i(qv) = (ao)v,
If v €V then 1v = v.

(a) f vi,vo,v3 € V then (vi + v2) + v3 = v; + (v + v3),
(b) There exists 0 € V such that if v € V then 0+ v = v.
(c) If v € V then there exists —v € V such that v + (—v) = 0.
(d) If vi,vo € V then v + vo = vu + vy,
(e) f ceF and vi,vn € V then ¢c(v1 + w) = cvi + cvs,
(f) f 1,0 € Fand v € V then (c1 + @)v =c1v + v,
)
)
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Linear transformations are for comparing vector spaces.

Let IF be a field and let V and W be F-vector spaces. An [F-/inear
transformation from V to W is a function f: V — W such that

(a) If Vi, Vo € V' then f(Vl —+ V2) = f(Vl) —+ f(VQ),
(b) If ceF and v € V then f(cv) = cf(v).

One vector space can be a subspace of another.

Definition (Subspace)

Let V be an F-vector space. A subspace of W is a subset W C V such
that

(a) 0e W,
(b) If wi,wp € W then wy +wp € W,
(c) If we W and c € F then cw € W.
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Definition (Basis and dimension)

Let I be a field and let V' be an F-vector space.
Let {vi,Vvo,...,Vi} be a subset of V.
An IF-linear combination of vi,...,v, is an element of the set

F-span{vi,..., v} ={cvi+ -+ ckvk | c1,,...,ck € F}.
The set {vi,...,vi} is linearly independent over I if it satisfies:
ifc,...,ck € Fand gqvi + -+ v =0

thencg =0, & =0, ..., ¢, = 0.
An [F-basis of V is a subset B C V such that
(a) F-span(B) =V,
(b) B is linearly independent.

The [F-dimension of V is the number of elements of a [F-basis B of V.
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Favourite vector spaces and favourite bases

1. R"={la1,a2,...,an) | a1,a2,...,a, € R} = M,«1(R) has basis

{ei,en,...,en}, where e =10,...,0,1,0,...,0),

has 1 in the ith entry and 0 elsewhere.

2. Mpn«n(R) has basis

{Ej | iedl,...,m}, j€{1,...,n}},

where Ej; is the matrix with 1 in the (/,) entry and 0O elsewhere.

3. R[x|l<h ={a0+ aix+---+apx" | ag, a1,...,an € R}

has basis  {1,x,x%,...,x"}.

4. The vector space of polynomials with coefficients in R is

R[x] = R-span{1, x, x%, x>, ...} which has basis {1, x, x%, x>, ..

.

135



Example V22. Let vy, vo, v3, v4 € R3 be given by

V1:‘1,2,3>, V2:‘3,6,9>, V3:‘—1,0,—2>, V4:’1,4,4>.
Is {v1, vo, v3, v4} linearly independent?
Express v» and v4 as linear combinations of v; and vs.

Is {v1, v3} linearly independent?

(a) Since vo =3v; then 0 =3v; — vo =3v; — vo + 0vz + —vy.
Soci =3, cc=-1, 3 =0, ¢4 =0 is a case that gives

Cc1vi + @vo + c3v3 + cavy = 0.

So {vi1, o, v3,v4} is not linearly independent.

(b) Since vo» = 3v; 4+ Ovs then v, € R-span{vy, v3}.
Since vy + v3 =(0,2,1) and v; +(0,2,1) = |1,4,4).
So v4 = 2v; + v3. So vy € R-span{vy, v3}.
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(c) To show: If ¢, 0 € R and ¢1]1,2,3) + | —1,0,2) = |0,0,0)
then c; = 0 and ¢ = 0.

Assume ¢1, ¢ € R and ¢1]1,2,3) + | —1,0,2) = |0,0,0).

Then

C1 — O = O,
2c1 + 0c =0,
3c1 + 2¢c = 0.

The first equation gives ¢c; = ¢ and the second equation gives 2¢; =0
so that ¢ = ¢y = 0. This system has

only one solution: c1 =0, o =0.

So {vi1,v3} is linearly independent. ]
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A subspace of R? is a subset L C R? such that

0el,

If wi,ws € L then wiy + wy € L,

If w e L and c € R then cw € L.
Eéample V7. Is the line L = {|x,y) € R? | y = 2x + 1} a subspace of
R<7?

Since 0 = |0,0) and 0 #2-0+ 1 then 0 £ L.

So L is not a subspace of R?.

Example A8. Is the line L = {|x,y) € R? | y = 2x} a subspace of R??
Since |0,0) = |0,2 - 0) then |0,0) € L.

Assume |a,2a), |b,2b) € L. Then

la,2a) + |b,2b) = |(a+ b),2(a+ b)) € L.
Assume |a,2a) € L and ¢ € R. Then
c-|a,2a) = |(ca),2(ca)) € L.

So L is a subspace of R?.
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Definition (Field)
A field is a set ¥ with functions

FxF — F FxF — F
(a,b) — a+b and (a,b) —— ab
such that
(Fa) If a,b,c € F then (a+ b)+c=a+ (b+ ¢),
(Fb) If a,b € F then a4+ b= b+ 3,
(Fc) There exists 0 € F such that

faclF then 04+a=aand a+0=a,

(Fd) If a € F then there exists —a € [ such that a+ (—a) = 0 and
(—a)+a=0,
(Fe) If a,b,c € F then (ab)c = a(bc),
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Definition (Field continued)
(Ff) If a,b,c € F then

(a+ b)c = ac + bc and c(a+ b) = ca+ cb,
(Fg) There exists 1 € F such that
faclF then 1-a=aanda-1=3,

(Fh) If a € F and a # 0 then there exists a~! € IF such that aa~! =1

and ala=1,
(Fi) If a,b € IF then ab = ba.
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