MAST10007 Linear Algebra

THE UNIVERSITY OF MELBOURNE
SCHOOL OF MATHEMATICS AND STATISTICS

Summer Term, 2026

Arun Ram: Additional Slides

These slides have been made by Arun Ram, in preparation for teaching of the summer session of MAST10007 Linear
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Lecture 11: More examples and applications

Solving problems with an unknown parameter.
Example L11. Find the values of a, b € Q for which the system

X —2y+z=4, (a) no solution,
2x —3y +z=7, has (b) a unique solution,
3x — 6y + az = b, (c) LOTS of solutions.

In matrix form this system is

3 —6 a X b
2 =3 1 yl =17
1 -2 1 z 4

Left multiply both sides by
1 0 0 3 -6 a
0 0 1 to get
0 1 -2 o 1 -1

—
e
—

N < X

|
~
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Left multiply both sides by

0 1 O 1 -2 1 X 4
1 -3 0 to get 0 0 a-3 yl=1b—-12
0 0 1 0 1 —1 4 —1
Left multiply both sides by
1 00 1 -2 1 X 4
0 0 1 to get 0 1 —1 y | = —1
0 1 0 0 0 a-3 4 b— 12
Left multiply both sides by
1 20 1 0 -1 X 2
0 1 0 to get 01 -1 y | = —1
0 0 1 0 0 a—3 4 b— 12
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Case 1: a— 3 # 0. Left multiply both sides by

1 0 O 1 0 -1 X 2
01 O to get 0 1 -1 yl =1 —1
1 b—12
0 O 2_3 0 O 1 Z 2—3
Left multiply both sides by
1 00 1 0 —1 X 2
01 1| toget [0 1 0 y| =[-1+22
b—12
0 0 1 0 0 1 z —
Left multiply both sides by
1 0 1 1 0 0\ /x 2 4 k=12
0 1 0] toget (0 1 0] [|y]=|-1+2L
0 0 1 0 0 1 z b—12
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So

_ b—12
= e 53 1

B ;11;L a=3”
2= 3-3>

or, equivalently,

( 2+ b—132 )
A
Sol(Ax=b) =< | -1+ Z__132 > (exactly one solution).
N =/
Case 2: a—3 =0. Then

1 0 -1 X 2

01 —1||yl=1] =1

0 0 O z b—12

Case 2a: b—12#0. If a—3 =0 and b — 12 # 0 then this system has
no solution.
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Case2b: b—12=0. If a—3 =0 and b — 12 = 0 then this system is

X =24z,
X —z=2, L
1 whichis y=—-1+4 z,
y - z=0+z,
where z can be any number. So
2 (/1\
Sol(Ax=b)= 1| +span< | 1] ;,
O \ 1 /

and there are LOTS of solutions.
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Application to graphs and networks.

Square matrices with 0, 1 entries are equivalent to graphs.

Example M1&2. The graph

V2 y 0 1 001

3 (1 0 1 1 1\

Vi ¢ has adjacency matrix A= |0 1 0 1 O
01 101

f \1 101 0f

There is a 1 in the (/,) entry if there is an edge connecting vertex i
and vertex J.
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Then

vl N
— AN AN —= M
NN —= M
 — AN — N
- <t - AN N\
AN — —= O
N -
~ N
N — O = O
O =1 = O
O+ O —+=H O
N O
O - O O
N~ -

|

~

e\

<

N

<

|

™

<

2> 6 3 3 5
(66677\
36 2 5 3
37 5 4 7
\5 7 3 7 4

The (i, ) entry of A3 gives the number of paths of length three from

vertex | to vertex J.
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Definition (Transpose of a matrix)
Let A€ M;ys(Q). The transpose of Ais AT € Msy+(Q) given by

(AT = A, foric{l,....;standjc{1,...,t}.

1 2 3 L4
Example M4. If A = then AT = [2 5
4 5 6
3 6
Definition (Trace)
Let A€ M,xn(Q). The trace of A'is
A1r - Arg
TI’(A) — A11+ -+ A, where A= :
Anl Ann
Example M3.
1 2 3
Tr{4 5 6] =1+5+49=15.
7 8 9
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Theorem (Inverse of a 2 x 2 matrix)

a b

Let A= [C d] c M2><2(Q). Then

1 d
ad — bc |—c¢
O Ifad — bc = 0 then A~ does not exist.

Example M5. Let A= [ i _1 ] Then

A = T ) (—11 D:%(

Check: L
(073
1 1 5 3

1. Ifad — bc # 0 then A~! =

—b
a

|

WINWI|—
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