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Lecture 10: Cross products (are only available in R3)

Let i, j, k → R3 be given by

i = |1, 0, 0〉, j = |0, 1, 0〉, k = |0, 0, 1〉.

Proposition (Standard basis of R3)

Let v → R3.

(a) If v = |a1, a2, a3〉 then v = a1i+ a2j+ a3k.

(b) If a1, a2, a3 → R and a1i+ a2j+ a3k = 0
then a1 = 0 and a2 = 0 and a3 = 0.

Definition (Cross product)

Let u = |u1, u2, u3〉 → R3 and let v = |v1, v2, v3〉 → R3. The cross
product of u and v is given by

u× v = (u2v3 − u3v2)i+ (u3v1 − u1v3)j+ (u1v2 − u2v1)k.
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Definition (Cross product)

Let u = |u1, u2, u3〉 → R3 and let v = |v1, v2, v3〉 → R3. The cross
product of u and v is given by

u× v = (u2v3 − u3v2)i+ (u3v1 − u1v3)j+ (u1v2 − u2v1)k.

In terms of determinants u× v is

u× v = det

(

u2 u3
v2 v3

)

i− det

(

u1 u3
v1 v3

)

j+ det

(

u1 u2
v1 v2

)

k

“=” det





i j k

u1 u2 u3
v1 v2 v3



 ,

where the last 3× 3 determinant on the right hand side doesn’t really
make sense (because i, j, k are not numbers); but this “determinant” is
a very useful mnemonic.
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If u = |u1, u2, u3〉, v = |v1, v2, v3〉,w = |w1,w2,w3〉 then

〈u, v × w〉 = 〈u1, u2, u3|(v2w3 − w3v2,−(v1w3 − v3w1), v1w2 − v2w1〉
= u1(v2w3 − v3w2)− u2(v1w3 − v3w1) + u3(v1w2 − v2w1)

= det





u1 u2 u3
v1 v2 v3
w1 w2 w3



 .

Since

〈v, v × w〉 = det





v1 v2 v3
v1 v2 v3
w1 w2 w3



 = 0

and

〈w, v ×w〉 = det





w1 w2 w3

v1 v2 v3
w1 w2 w3



 = 0

then
v × w is perpendicular to both v and w.
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Example E5. Find a vector perpendicular to both |1, 1, 1〉 and
|1,−1,−2〉.

Solution: By definition of the cross product

|1,1, 1〉 × |1,−1,−2〉
= |1 · (−2)− 1 · (−1),−(1 · (−2)− 1 · 1), 1 · (−1)− 1 · 1〉
= |−1, 3,−2〉.

The vector |−1, 3,−2〉 is perpendicular to both |1, 1, 1〉 and |1,−1,−2〉
since

〈−1, 3,−2 | 1, 1, 1〉 = −1 + 3− 2 = 0

and
〈−1, 3,−2 | 1,−1,−2〉 = −1− 3 + 4 = 0.
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Theorem (Volumes of parallelipipeds)

(3) Let u = |u1, u2, u3〉 → R3 and v = |v1, v2, v3〉 → R3 and
w = |w1,w2,w3〉 → R3. The volume of the parallelipiped with
vertices 0,u, v,w,u + v,u+ w, v + w,u+ v + w is

∣

∣

∣

∣

∣

∣

det





u1 u2 u3
v1 v2 v3
w1 w2 w3





∣

∣

∣

∣

∣

∣

.

(2) Let u = |u1, u2〉 → R2 and v = |v1, v2〉 → R2. The area of the
paralellogram with vertices 0,u, v,u + v is

∣

∣

∣

∣

det

(

u1 u2
v1 v2

)
∣

∣

∣

∣

.

(1) Let u = |u1〉 → R1. The length of the segment with endpoints 0 to
u is

| det(u1)|.
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Example E6. Find the area of the triangle in R3 with vertices |2,−5, 4〉,
|3,−4, 5〉 and |3,−6, 2〉.

Letting u = |3,−4, 5〉 − |2,−5, 4〉 = |1, 1, 1〉 and

v = |3,−6, 2〉 − |2,−5, 4〉 = |1,−1,−2〉, then

u× v = |1, 1, 1〉 × |1,−1,−2〉
= |1 · (−2)− 1 · (−1),−(1 · (−2)− 1 · 1), 1 · (−1)− 1 · 1〉
= |−1, 3,−2〉.

Then

(Area of triangle) = 1
2(area of rectangle with edges u and v)

= 1
2

1

‖u× v‖

(

volume of parallelipiped
with edges u, v and u× v)

)

= 1
2‖u× v‖ = 1

2‖ |−1, 3,−2〉 ‖

= 1
2

√

(−1)2 + 32 + (−2)2 =

√
14

2
.
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Example E7. Find the volume of the parallelipiped with adjacent edges−→
PQ,

−→
PR,

−→
PS , where

P = |2, 0,−1〉, Q = |4, 1, 0〉, R = |3,−1, 1〉 and S = |2,−2, 2〉.

Since the edges of the parallelipiped are

−→
PQ = P − Q = |2, 1, 1〉,

−→
PR = P − R = |1,−1, 2〉,

−→
PS = P − S = |0,−2, 3〉,

then

(Volume of parallelipiped) = |〈
−→
PQ ,

−→
PR ×

−→
PS〉|

=

∣

∣

∣

∣

∣

∣

det





2 1 1
1 −1 2
0 −2 3





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

2 · det
(

−1 2
−2 3

)

− det

(

1 1
−2 3

)∣

∣

∣

∣

= |2(−3 + 4)− (3 + 2)| = |−3| = 3.
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Example E10. Find the Cartesian equation of the plane with vector form

|x , y , z〉 = s |1,−1, 0〉 + t |2, 0, 1〉 + |− 1, 1, 1〉, with s, t → R.

A normal vector to this plane is

n = u× v, where u = |1,−1, 0〉 and v = |2, 0, 1〉.

Then u× v = |−1−0,−(1−0), 0−(−2)〉 = |−1,−1, 2〉.
Then |−1, 1, 1〉 is a point in the plane, and

〈−1, 1, 1 | u× v〉 = 〈−1, 1, 1 |−1,−1, 2〉 = 1− 1 + 2 = 2.

Since the plane is

|−1, 1, 1〉 + {|x , y , z〉 → R3 | 〈x , y , z |−1,−1, 2〉 = 0}

then the Cartesian equation of the plane is

−x − y + 2z = 2.
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