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1. INTR~DUC~~N 

This paper presents what is in a sense a solution of-or at least decisive 
progress on -two longstanding problems on infinite-dimensional represen- 
tations of algebras, namely, the problems of determining the irreducible 
representations of the Lie algebra sI(2) and of the Weyl algebra ‘L[, . 

These problems had been regarded as hopeless. Indeed, let g be any (linite- 
dimensional) nonabelian Lie algebra over the complex numbers C, and 
consider (algebraically) irreducible representations of g (or equivalently of 
the enveloping algebra Ug) acting on a vector space which is allowed to be 
infinite dimensional. The subject of enveloping algebras is largely concerned 
with these representations, but even in the simplest nonabelian case, with 
g = b the three-dimensional (nilpotent) Heisenberg algebra, as Dixmier 
remarks in the preface of [ 151, “a deeper study reveals the existence of an 
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enormous number of irreducible representations of h . . . . It seems that these 
representations defy classification. A similar phenomenon exists for 
g = 51(2), and most certainly for all nonabelian Lie algebras.” The extensive 
work in the subject has concentrated on the classification of the kernels, that 
is, the primitive ideals of Ug, and the construction of interesting series of the 
representations. 

The present paper considers the problem of the classification of the 
irreducible representations of h and of 41(2) and also of the two-dimensional 
nonabelian Lie algebra 6, and thus of the prototypes respectively of 
nilpotent, semisimple and solvable Lie algebras. Our results for sl(2) are 
roughly this: the simple modules are (up to isomorphism) the highest weight 
modules, the Whittaker modules, and a family of (mutually nonisomorphic) 
modules (mostly new) which we construct. The modules in the latter family 
are in bijective correspondence to the set of all pairs (y, [b]), where y is a 
scalar (given by the action of the Casimir element c) and [b] is a similarity 
class (containing b) of irreducible elements of the algebra 23 of differential 
operators with rational function coefficients. The simple module for a given 
(y, [6]) is constructed by giving, in the simple d-module B/2%, a generator 
for a simple submodule over a certain copy of U51(2)/(c - y) in 9; actually, 
we give a sufficient condition for an element of B/Bb to be in this 
submodule, and show how to find (nonzero) elements satisfying this 
condition. In the case of elements (necessarily irreducible) of ‘B of degree 
(that is, order) one, where the set of similarity classes has a very simple 
description, we carry out explicitly the construction of the corresponding 
simple sl(2)-modules (as specific subsets of C(q)). 

The same classification problem is also considered for the (first) Weyl 
algebra ‘u = U,(C)--this is the associative algebra C[q, p] with two 
generators p, q subject to the relation pq - qp = 1, which may be realized as 
the algebra of differential operators with polynomial coefficients. As is well 
known, the classification problems for $ and for ‘?I are equivalent, since the 
primitive quotients of V$ are U$/UJ(z - a) (where 0 # z E center of h and 
a E C), and Uh/Uh(z - a) g ‘?I if a # 0. Our result for 2I is similar to that 
indicated above for 41(2). Our result for b is somewhat more complicated in 
that only a subset (which we determine) of the set of similarity classes of 
irreducible elements of B is used in the parameter set. The results of previous 
studies of the irreducible modules over 2l (including [5, 6, 12-14, 241) and 
over el(2) (including [2-4, 23, 25, 261) are fragmentary, and the study of the 
irreducible modules over b does not seem to have been undertaken before. 

The algebra B mentioned above may be written as B = B(C) = C(q)[ p], 
the associative algebra of polynomials in p (= d/dz) with coefficients in C(q) 
(where q = multiplication by I) subject again to the relation pq - qp = 1; 
thus b is the localization of U at S = C[q] - (0). While both 93 and its 
subalgebra 2I are simple rings, 8 has the added property that it is a principal 
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left (or right) ideal domain (in fact Euclidean). By a classical theory the 
representations of B can be described in terms of factorization of elements of 
d. We recall [ 181 that a d-module M is simple if and only if A4 z 23/23b for 
some b E 8 which is irreducible (in the usual sense: b = UC implies a or c is 
a unit); and 23/db z 23/233a if and only if a and b are similar, that is, there 
exists c E 23 such that 1 is a greatest common right divisor of b and c and QC 
is a least common left multiple of b and c (similar is a noncommutative 
generalization of associate). 

For any algebra A we denote by AA the set of isomorphism classes of 
simple A-modules. Thus we may identify $A with the set of similarity classes 
of irreducible elements of d, with the isomorphism class [N] of a simple 
module N identified with the similarity class [b] where for some 0 # n E N, b 
is a minimal annihilator of n (= annihilator of n of lowest degree (in p), such 
b necessarily being irreducible). 

We now describe in more detail our principal results for A- for the three 
main cases mentioned above, namely, for A = U, A = Ub and A = USI( In 
each case we shall give a parameter set (described in terms of a^) in 
bijective correspondence with A-, and for each element of the parameter set 
we shall construct a simple module in the corresponding isomorphism class. 
In this introduction we state our main results over C; in the body of the 
paper the results are done over an arbitrary base field of characteristic 0. For 
?I-, we take 93- U C as the parameter set. If N is a simple d-module then the 
socle Sot, N (= sum of the simple 26submodules of N) is simple (see 
Section 2.2), and to [N] we make correspond [Sot, N]. To a E C we make 
correspond the U-module C[p] with p acting as multiplication and q as 
a - d/dp; we denote, this module by (C [p], a). The modules (C [p], a) are 
(up to isomorphism) precisely the simple ‘+X-modules which are S-torsion 
(S = Ck?l - P1), or equivalently, for which q has an eigenvector. 

Returning to the S-torsionfree simple VI-modules Sot, N, we now have to 
construct these modules, that is, actually find Sot, d/db for b E 2.3 
irreducible, say by determining a generator. To this end we regard b as a 
differential operator. For each (finite) singular point a (if any) of b we 
consider the indicial equation Q,,*(r) = 0 relative to a (the same polynomial 
equation used in discussing expansions about a of solutions of the 
differential equation bw = 0). Let B,(b) be the least integral indicial root 
(relative to a), with 8,(b) = +co if there is no integral root. Note that given 
b and a, B,(b) is computable. For s E S and p E C we denote by vq(s) the 
order of s at /I. We now give our recipe for constructing S-torsionfree simple 
%-modules, which gives every such module. 

THEOREM 1. Let b E 93 be irreducible and pick s E S such that v,(s) > 
-8,(b) for every singularity a of b. Then (as + db)/‘Bb is a simple %-module 
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(= Sot, 8/23b). Up to isomorphism every S-torsionfree simple ‘U-module 
arises in this way, and from a b which is unique up to similarity. 

This theorem appears as a special case of Theorem 4.4 below. As 
remarked above, the remaining simple %-modules are easily described: A*@- 
torsion) = { [(C [ p], a)] ] a E C ). (H ere and throughout the paper we use the 
following notation: if A is an algebra and 9 is an isomorphism-invariant 
property of simple A-modules, then A-(9) = ([Ml E A- 1 it4 has property 
Y})* 

This result is illustrated in Section 7.1 by giving the complete list of simple 
U-modules of degree one, that is, for which some nonzero element is 
annihilated by some element of the form b, p + b, where b, , b, E C [q] (but q 
has no eigenvector). The modules are the subrings C [q, (q - a I)-’ a.. 
(q - aj)-‘1 of C(q) withj> 0, a , ,..., aj E C, q acting as multiplication andp 
as t + d/dq, where t E K(q) with poles a r,..., aj and with no simple pole 
having an integral residue; two such modules are isomorphic if and only if 
the respective t differ by the logarithmic derivative of some fE C(q) - (0) 
(thus the modules are parameterized by C(q) modulo the additive subgroup 
generated by {(q-a))’ 1 a E C}). 

Let b be the two-dimensional nonabelian Lie algebra, realized as the Bore1 
subalgebra Ch + Ce of eI(2), so that [h, e] = 2e. We denote by p the 
homomorphism of Ub to ‘u (or 23) with ph = 2qp and pe = q. Then p is 
injective, and so 13 may be identified with pub; in particular then S c ub. 
Again the study of Ub splits into two parts: 13~ (S-torsion) (which is easy) 
and Ub- (S-torsionfree). An S-torsionfree simple Ub-module it4 localizes to a 
simple !&module, but unlike the case of 3, it is not true that every simple Y3- 
module contains a simple Ub-submodule. We must determine for precisely 
which [b] is Soc,,Z3/93b nonzero (it is then simple), and for such [b] we 
must describe the socle. In doing this we shall again make use of the indicial 
equations relative to the singular points of 6. The condition on the coef- 
ficients of b in the following theorem is equivalent to the condition that 0 is a 
singularity of b at which the indicial polynomial has degree zero. 

THEOREM 2. Let b = z bj(q)$ E 23 be irreducible. Then 
Soc,23/23b # 0 if and only if b,(q) # 0 and, for all j > 0, the rational 
function bj(q)/b,(q) has a zero at 0 of order at least j + 1. Suppose this 
condition holds, and pick s E S such that v,(s) > -8,(b) for every singularity 
a # 0 of b. Then (ubs + Bb)/Bb is a simple Ub-module (= Soc,,B/Bb). Up 
to isomorphism every S-torsionfree simple L&-module arises in this way, and 
from a b which is unique up to similarity. 

This theorem is included in Theorem 6.2. The theorem gives ub- (e has no 
eigenvector). Again it is easy to describe the remaining simple Ub-modules 
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(this is included in Proposition 6.1): they are the modules induced from one- 
dimensional nontrivial modules for the subalgebra Ce, and the one- 
dimensional modules. Alternatively these modules may be described as the 
restrictions to b of the simple Whittaker modules for eI(2) (see below), 
together with the one-dimensional modules, realized, say, as b-submodules of 
the highest weight modules over ~((2). 

The Weyl algebra 2I and ub may each be regarded as a skew-polynomial 
ring. Thus each consists of polynomials in x with coefficients in C[q] and 
with xf -fx = 8f forfE C[q], where a is the derivation d/dq (and x = p) for 
‘u, and a = q(d/dq) (and x = 4p) for ub. Theorems 1 and 2 suggest that there 
should be a common generalization, which at the other extreme should 
include the commutative case-where 8 = 0 and there are no S-torsionfree 
simple modules. We give such a result in Theorem 4.4, in fact with C [q] 
replaced by an arbitrary Dedekind domain R and with a any derivation of R. 
The &invariant prime ideals of R play a role analogous to that of the prime 
q .in Theorem 2, and for the remaining prime ideals we use a generalization 
of indicial polynomials defined in Section 3. The commutative case, where S- 
torsionfree simple modules correspond to maximal ideals contracting to 0, is 
given in Corollary 4.5. 

We turn now to the case of Us1(2), using a family of embeddings (due to 
Conze [II]) of sI(2) in 9I. (For sI(2, R) we shall need another family of 
embeddings uy in 8, introduced in Section 5.2). Let s = sI(2, C) with the 
usual basis e, f, h, and for A E C, let pA be the homomorphism of Us to % (or 
8) determined by pAe = q, pAh = 2qp + A + 1, p,f= -(4p + Iz + 1)~. Also 
let c denote the Casimir element 4fe + h2 + 2h of Us. For every simple Us- 
module, c acts as a scalar. The kernel of pJ is Us(c - A2 + l), and the ideals 
Us(c - y) (JJ E C) are precisely the minimal primitive ideals of Us (the only 
other primitive ideals of Us being those of finite codimension n2, n = 1,2,...). 

THEOREM 3. Suppose 1 E C and u E Us such that p,u is irreducible in 
b. Pick s E S such that v,(s) > -e,@, u) for every singularity a of pAu and 
vO(s) > -0o@-n~) tf 0 is a singulari& of ppAu. Then (kAUe)s + 
dp, u)/23p, u is a simple pA &-module (= Soc,&3/23pA u). Let its pullback 
along pA be denoted by M(u, A2 - 1) (which is thus a simple Us-module with 
c acting as A2 - 1); Every simple Us-module for which e has no eigenvector 
is isomorphic to some M(u, A2 - l), and M(u, A2 - 1) g M(u,, # - 1) tfand 
only if A2 = A: and plu is similar to pAu,. 

This theorem is included in Theorem 5.5. Again the remaining simple Us- 
modules (that is, those for which e has an eigenvector) are easily described: 
they are the well-known highest weight modules, and the simple Whittaker 
modules of Kostant [2 1 ] (these being modules for which e has a nonzero 
eigenvalue); this is included in Proposition 5.3. (It is interesting that these 
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modules, like the C[e]-torsionfree Us-modules, arise by pullback along an 
appropriate pn from the pA Us-socle of a simple VI-module; specifically, for 
the Whittaker modules, from the (C [ p], a), (x # 0, and for the highest weight 
modules, from (C[p], 0)). A more intrinsic (not involving pn) description of 
the modules M(u, 1’ - 1) is given in Section 5.4. 

As is the case for 2l, the result of Theorem 3 is also illustrated in Section 7 
by giving the complete list of simple Us-modules of degree one, that is, for 
which some nonzero element is annihilated by some b,(e)h + b,(e), where 
b,, b, E K[e] (but e has no eigenvector). The modules are explicitly 
constructed there as certain specific subsets of C(q). In particular this gives a 
new description of the simple Harish-Chandra modules over s (with respect 
to Ch). 

THEOREM 4. Suppose M is a simple Us-module but not a highest weight 
module. Then the following are equivalent: (i) M contains a simple Ub- 
submodule; (ii) M is simple as a Ub-module; (iii) some (respectively, (iv) 
every) m E M - {O) is annihilated by some element of the form eu + 1, 
u E Ub. Moreover, every simple Ub-module of dimension > 1 arises in this 
way. 

This result is contained in Theorem 6.4. It may be regarded as a beginning 
of an internal analysis of the simple Us-modules having no eigenvector for e. 

Irreducibility and similarity of elements of b are concepts in differential 
algebra, going back to Frobenius and Poincare. Kolchin [20] proved that 
b E 8 is irreducible if and only if its differential Galois group (an algebraic 
group) is irreducible. Picard [29, Chap. 171, gave a procedure for deter- 
mining whether or not a given b E 23 is irreducible. More recently, some 
examples of irreducible elements were given in [5, 6, 22, 241. The ring B is a 
unique factorization domain, where the uniqueness of the irreducible factors 
is up to (order and) similarity [18, 281. There remains the problem of 
obtaining a better description of the similarity classes of irreducible elements 
of B of degree >2. The methods of the present paper have some bearing on 
this question, as will be shown elsewhere. 

Throughout the paper K denotes a field of characteristic 0, and K its 
algebraic closure. The reader primarily interested in Lie algebras is advised, 
on first reading, to make the following assumptions: the base field K is 
algebraically closed, B = S(K);‘S = K[q] - {0}, and A is one of U(K), pub, 
pA Us (A E K) or o,Us (y E K) where 5 = sI(2, K) and oy is defined in 
Section 5.2. Thus B is the localization S-IA. 

In [8, 91 some of the results of the present paper (for the case K 
algebraically closed) were announced, without proof (with one exception in 
191). I would like to thank Anthony Joseph for contributing a major 
simplification to the proof for U. 
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2. LOCALIZATIONS 

2.1. We begin by recalling some definitions and facts about 
localizations of noncommutative rings (see [ 10, pp. 13-161). Let A be a ring 
with 1 and S a multiplicative subset of A containing 1. By a (left) 
localization of A at S is meant a ring B = S- ‘A containing A as a subring 
such that every s E S is invertible in B and B = {s-b 1 s E S, a E A}. A 
localization of A at S exists if and only if S contains no zero divisor of A 
and satisfies the (left) Ore condition: for each pair (s, a) E S x A, As n 
Sa # 0. The ring B is unique up to isomorphism. If A also has a right 
localization at S then the two localizations can be identified with each other, 
giving a two-sided localization at S. Suppose B = S- ‘A exists and M is an 
A-module. A localization S’M can be constructed analogously to the 
construction of S-‘A; S-‘M is a B-module which is canonically isomorphic 
to the induced module B a,, M. The canonical map q: M--t S-‘M 
((om=l@mifS-‘M is identified with B aA M) is injective if and only if M 
is S-torsionfree (that is, sm = 0 implies m = 0). The mapping of B- 
submodules of S- ‘M to submodules of M given by N w  rp- ‘(N) is injective 
and has as its image the set of submodules L of M for which M/L is S- 
torsionfree. Suppose M is a left ideal of A, considered as an A-module 
M = AM, then the localization S-‘M is canonically identified with {s- ‘m ( 
s E S, m E M}, a left ideal of B. In particular if M = “A then S-‘M = B, v, 
is the inclusion map, and if N is a left ideal of B then (P-IN = A n N and 
S-‘(AnN)=N.ThusthemapN~AnNofthesetofleftidealsofBto 
the set of left ideals of A is injective, and its image consists of those J for 
which A/J is S-torsionfree. In particular, for any left ideal I of A there is a 
unique smallest left ideal J of A such that J contains I and A/J is S- 
torsionfree; moreover J = A n S- % For future reference the following 
lemma singles out a special case of this. 

LEMMA 2.1. Suppose that B is a localization of A at S, J is a maximal 
left ideal of A, and A/J is S-torsioqf+ee. Then J is the intersection with A of a 
maximal left ideal (namely, S’J) of B. 

If A has a localization at S then it follows from the Ore condition that the 
set (mEM[sm = 0 for some s E S} of S-torsion elements of an A-module 
M is a submodule, the S-torsion submodule. In particular, if M is simple, 
then M is either S-torsionfree or an S-torsion module. 

2.2. Suppose A has a localization B = S-‘A at S. If M is an S- 
torsionfree simple A-module, then S- ‘M is a simple B-module. Hence we 
have a canonical map, which we also denote by S- ‘, 

S-l: [M] H [S-‘M] 

from A- (S-torsionfree) to Be. 
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If M is S-torsionfree we shall identify M with its image in S’M. Then M 
is an essential submodule of A(S-‘M), that is, every nonzero submodule 
intersects it. 

LEMMA 2.2.1. Suppose B = S-IA. The canonical map S-‘: A-(S- 
torsionfree) + B- is injective and has as its image the set of classes [N] for 
which Sot, N # 0. In particular, tf N is a simple B-module and AN contains 
a simple submodule N’ then N’ is essential (hence unique) and N 2 S-‘N’. 

Proof. Suppose M, and M, are S-torsionfree simple A-modules and 
S’M, z S’M,. Then Mi is an essential simple submodule of #-‘MI) 
(i = 1,2). Such a submodule is unique and so is preserved by the 
isomorphism S-‘M, + S’M,. Hence M, g M, and therefore S-i is 
injective. Now suppose N is a simple B-module and ,N contains a simple 
submodule N’. Then S-IN’ is a simple B-module. By a universal mapping 
property the inclusion map N’ + N extends to a B-map of S’N’ to N. This 
latter map is an isomorphism since both N and S’N are simple. Hence 
[N] = S-‘[N’] and N’, being essential in S-IN’, is also essential in N. 

Q.E.D. 

As we shall see in Theorems 4.4 and 5.5, if A = ‘3 or pA W(2) and B = 23 
then the above canonical injection is surjective, that is, any simple B-module 
N contains a simple A-submodule (=Soc,N); our approach will yield much 
more, namely, we shall determine elements of Soc,N, and thus a 
construction of it. This close relationship of B- and A*(S-torsionfree) was 
unexpected; however, it is possible to give an easy, but nonconstructive, 
proof of the surjectivity, that is, of the mere existence of the simple A- 
submodule of N, as follows. For this purpose we use some invariants 
&(L, co), 9(L, co), d(L), defined in [4], of a left ideal L # 0 of a primitive 
quotient A = U51(2)/(c - y) of &l(2). The .&‘(L, co), 9(L, 03) are certain 
nonzero ideals of polynomials in one indeterminate, and d(L) E Z. They 
satisfy the property that if M is another left ideal with L EM then 
d(L, 03) G &‘(M, co), 3’(L, co) G 9(M, co), and d(L) > d(M); in 
[4, Prop. 21 it is proved that if, moreover, &‘(L, 00) =J(M, oo), 
9(L, co) = 9(M, co), d(L) = d(M), and A is simple then L = M. If A is not 
simple then the proof of [4, Prop. 21 gives instead the conclusion that 
dim,M/L < co. 

LEMMA 2.2.2. Suppose A = ‘u or a primitive quotient of W(2). If 0 #I 
is a left ideal of A then A/I has Jnite length. 

Proof If A = Cu (respectively, a simple quotient of &l(2)) this was 
proved in [27, 141 (resp. [4]). Now let A be a nonsimple primitive quotient 
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of M(2). Thus A contains a unique proper ideal J of finite codimension. As 
A in Noetherian it suffices to prove that A/I contains a minimal submodule. 
Suppose it does not. Then there exists a strictly descending chain {L,} of left 
ideals #1 and having intersection I, the chain being indexed by the ordinals 
less than some given ordinal. The J/(L,, co), 9(L,, oo), and d(L,) 
become stationary since they are bounded respectively below by d(l, co), 
9(1, co) and above by d(I). Hence there is an o such that dim&,/L,, < co 
and arm L&5,, = J for all o’ > w. Therefore JL,s no,,oLw, =I. But 
then any cyclic submodule of L,/I is annihilated by J and hence is finite 
dimensional, and so contains a minimal submodule, a contradiction. Q.E.D. 

COROLLARY 2.2. Suppose A = ‘11 or pn &I(2). Then every simple 8- 
module N and every simple ‘2I-module M contain a simple A-submodule. In 
particular, for this A (with S = K[q] - {O}) the canonical injection S-‘: 
A^@-torsionfree) -+ B- is suvective. 

Proof If 0 # n E N then anngn # 0 and hence I = annA n # 0. Therefore 
the A-module An z A/I contains a simple submodule. A similar argument 
works for M, using S- ‘A = S- “8 when M is S-torsionfree, and using 
0 # ann,m) r7 S c A when M is S-torsion. Q.E.D. 

The algebra A = K[q, 4p] E 9l (thus A zpUb) is an example for which the 
above conclusions fail (this follows from Corollary 4.4.1 below). 

2.3. Suppose B = S- ‘A. By Lemma 2.1, any S-torsionfree simple A- 
module is isomorphic to A/A r7 L for some maximal left ideal L of B. Given 
a maximal left ideal L of B, A/A n L is S-torsionfree. When is it simple? 
The following lemma gives a sufilcient condition. 

LEMMA 2.3. Suppose B = S-‘A, L is a maximal left ideal of B, and for 
every simple S-torsion A-module M there exists an element of A n L acting 
injectively on M. Then the left ideal A n L of A is maximal. 

Proof Let J be a maximal left ideal of A containing A n L. If A/J is S- 
torsionfree then, by Lemma 2.1, S-‘J is a maximal left ideal of B, J= 
AnS-‘JzAnL, S-‘JI>L, and hence S-‘J=L, and J=AnL. Now 
suppose A/J is not S-torsionfree. Then a acts injectively on A/J for some 
aEAnL. But for-the coset 1 +JEA/J, a(1 +J)=O since AnLcJ, a 
contradiction. Q.E.D. 

2.4. Suppose B is a principal left ideal domain which is not a 
division ring. Then the maximal left ideals of B are precisely those left ideals 
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Bb for which b is irreducible. If N is a simple B-module and 0 # n E N, then 
the annihilator anng n of n in B is a maximal left ideal of B, hence of the 
form Bb, b irreducible. We call b a minimal annihilator of n; it is uniquely 
determined up to left multiplication by a unit of B. Thus an irreducible 
element of B is an annihilator of n if and only if it is a minimal annihilator 
of n. If also 0 # n’ E N then N g B/arm, n g B/arm, n’, and so any minimal 
annihilator of n’ is similar to b. Conversely, if a E B is similar to b, say with 
ad a least common left multiple (1.c.l.m.) of d and b and with 1 a g.c.r.d. of d 
and 6, then d & Bb, dn # 0, and a is a minimal annihilator of dn. We write 
min ann N = {b E B 1 3 n E N - {0) such that b is a minimal annihilator of 
n} and summarize as follows. 

LEMMA 2.4.1. Suppose B is a principal left ideal domain which is not a 
division ring, and N is a simple B-module. Then min ann N is a similarity 
class of irreducible elements of B, and the map of BI to the set of similarity 
classes of irreducible elements of B, [N] +P min ann N, is a bijection (with 
inverse [b] H [B/Bb]). 

In certain cases when B = ,!-‘A we shall be able to classify A-(S- 
torsionfree). The following criterion allows us to recognize which 
isomorphism class a given A-module belongs to. 

LEMMA 2.4.2. Suppose B = S’A is a principal left ideal domain, A4 is a 
simple S-torsionfree A-module, a E A is irreducible in B and annihilates 
some nonzero element of M. Then MZ Sot, BIBa. 

Proof We have M= Sot, S’M. Since a is irreducible and an 
annihilator, a E min ann S’M. Therefore S-‘Mr B/Ba. Q.E.D. 

3. INDICIAL POLYNOMIALS 

3.1. In this chapter we develop some machinery which will be used 
later in applying Lemma 2.3. The special cases of principal concern are those 
for which A = U (the Weyl algebra) or its subalgebra K[q, 4p], and B is their 
common localization B = K(q)[ p]. 

Let R be a commutative domain, a a derivation of R, and A = R[x]~ the 
corresponding skew-polynomial ring (or differential operator ring) in one 
variable x, that is, A = R @,Z[x] (as a Z-module) with multiplication deter- 
mined by xr = rx + ar (r E R), where r, ar and x also denote the images of 
these elements under the canonical maps of R and Z[x] into A (this is a 
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special case of the smash product or semidirect product construction [31]). 
Thus A = 9I(K) when R = K[q], a = d/dq, and p =x. We also write S for 
R - (0) and let T be the quotient field of R, that is, T= S-‘R. The 
derivation 8 extends uniquely to a derivation of T, also denoted a. We shall 
denote by B the ring T[x]~; thus B = S-IA, and if R =K[q], 8 = d/dq and 
p = x then B = S(K). 

Throughout this and the next chapter (except in Section 4.5) we make the 
following assumptions: prime ideal means nonzero prime ideal, and 

R is a Dedekind domain, a is a derivation of R (hence also 
of the quotient field 7’), R/P has characteristic 0 for every (3.1.1) 
prime ideal P of R such that 8P @ P, A = R [x]~, B = T[x], . 

(In our principal applications the hypothesis on characteristic 0 could be 
strengthened to: R contains Q). 

Suppose P is a prime ideal of R; let v,, denote the valuation of T 
corresponding to P, that is, if t E P’ -P i+l then vPr = i. The localization R, 
is the valuation ring {t E T 1 v, t > 0) of v, ; its unique maximal ideal is PR, . 
Trusting that there will be no confusion with localization, we denote by KP 
the residue class field Rp/PRp (which may be identified with R/P) and by qP 
the canonical map of R, to Kp (that is, with the above identification, qP is 
the canonical map of R to R/P). If a base field K is given then K is identified 
with a subfield of K,,. In particular, if R = K[q] and P = (g), where g is 
manic irreducible then we write v, = v,, Kp = K, and ttp = vg. In this case 
Kg, identified with K[q]/(g), equals K(a) where a, the image of q, is a root 
of g. If g is linear, say g = q -a, then qg: K[q] + K is evaluation at CL 

We extend v, to a function on B, also denoted by v,, as follows: if 
b=Cb$EB then 

v,b = min(v,(b,) - i ) i > 0) if aP&P, (3.1.2) 

v,b = min{v,(b,) 1 i > 0) if 8PG P. (3.1.3) 

LEMMA 3.1. For any prime ideal P of R, v, is a valuation on B. 

Proof: We must show (i) v(a + b) > min{va, vb), (ii) v(ab) = va + vb 
(where v denotes vP). We omit the (routine) proof of (i). For (ii) we have 

(3.1.4) 

607/39/M 
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Write 6 = 0 or 1 accordingly as aP G P or not. Then v(at) > -6 + vf for 
t E R and hence also for t E T. Suppose that V, w  are the largest integers 
such that vu = vu, - 6v, vb = vb, - 6w. We have 

va3 jembi-m > vu + Sj + vb + 6(i - m) - S(j - m) = vu + vb + 6i. 

Consider the coefficient of xi in (3.1.4) when i = u + w. Then the inequality 
just above is strict in each of the following cases: j > U; j < v (then i - m > 
i-j>i--VW); and m<j=v (then i-m>i-j=i-v=w). In the 
remaining case, j = v = m, the inequality becomes an equality. Therefore 
v(ab), = vu + vb + 6i when i = v + w. Q.E.D. 

Actually the definition of vP in (3.1.2) gives a valuation even if aP c P, 
but we shall not use this. 

3.2. Suppose P is a non-a-invariant prime ideal of R. Then there 
exists g E P -P* such that ag & P. If also g’ E P-P* then g’ = ug, where u 
is a unit of R,, and vP 8g’ = vP(u ag + (&)g) = 0 since 0 = v,u 8g < vP(&)g. 
Therefore for every g E P-P*, 8g 6?? P. Now pick g E P - P2. For b = 
C bjx’ E B we define a polynomial Qb = Q*(c) = QP,,,b(r) E KP[<] by 

QidO = ,.. ~4 g- ““-jbj(agy’} <(r - 1) ... (r - j + 1) (3.2.1) 

(= 0 if b = 0). We call this the indicialpolynomial of b relative to P, g (or at 
P, g). Note that the evaluation of vP in the jth term of (3.2.1) makes sense 
since 

v,,(b,(agy’) = v, bj + jv,(ag) = vp bj > vp b + j. (3.2.2) 

There is an index j for which (3.2.2) is an equality; if k is the highest such 
j then Qb({) has degree k. In particular, if b # 0 then Qb # 0. 

If B = 23(K) and g = q - a (a E K) we may, without danger of confusion, 
write Qp,b in place of Q(sJ,g,b and call Q,,6 the indicial polynomial of b 
relative to a (or at a); recall that in this case qP is evaluation at a. In 
particular suppose K = C and a E C; then a is a singular point of b 
(regarded as the differential operator ~~=, bj(q)d/dq of order k) if and only 
if a is a pole of some b,(q)/b,(q). In this case the equation Q,,,(c) = 0 can 
be seen to coincide with the indicial equation relative to the singularity a 
considered classically in expanding solutions of the differential equation 
bu = 0 about a; the case of a regular singular point a is precisely that for 
which degree Q,,b(c) = k. (Classically one does not consider the indicial 



REPRESENTATTONS OF 41(2) 81 

equation at an ordinary point; our definition makes the indicial polynomial 
there a nonzero constant times r(r - 1) .e. (c - (k - l)), which has the 
appropriate roots.) 

We define QP,b to be the manic polynomial obtained by dividing QP,b,6 by 
its leading coefficient (Q,,, = 0 if QP,g,b = 0). We call (z,,, the normalized 
indicial polynomial of b relative to P. 

LEMMA 3.2. The polynomial gp,b is independent of the choice of g. If R’ 
is a Dedekind domain containing R with derivation extending a, P’ a prime 
ideal of R’, P’ n R = P, and v,, I,, = v, (that is, the ramt@cation index is l), 
then or,b = Qptq6. In particular, if B = S(K), g E K[q] is irreducible and a 
is a root of g in K, then &,,b = &-a,.l, where on the right side b is 
regarded as an element of 23(K). 

Proof: Suppose g’ E P - P2. As before, g’ = ug, where u E R, (and so 
also au E RP) and v,u = 0. Hence 

It follows from (3.2.1) that 

which gives the first statement. For the second statement we may use the 
same g, since g E P’ - P12; the statement then follows from the fact that q,,, 
extends qP, where K,, is canonically identified as a subfield of Kp,. Q.E.D. 

3.3. In this section we shall use the hypothesis 

P is a prime ideal of R, b’P & P, g E P - P2. (3.3.1) 

We can regard T as a B-module, with action written b . t, where x . t = at 
and t, . t = t, t (I, t, E T). 

LEMMA 3.3.1. Suppose (3.3.1) holds, 0 # b E B, and 0 # t E T. Then, 
for the B-action on T, there exists t, E R, such that 

g -‘@‘b. t=t,t, ttdl = Qiwd”d)~ 

ProoJ: Write b = G b,x/ (b, E 7’), vb = v,,b, k = vpt. Then t = gkt2 where 
v, t, = 0 (and so in particular dt, E R, for all j > 0). We have 
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g-“bb.t= 
I 
gt,+xk(k-l)...(k-j+l)(agy’bjg-““-’ t, 

i I 

where 

gt,t E 1 g-“bbjgk-i+‘Rp c gk+‘R, 
i 

and so I, E R,. Denoting by t, the coefficient of t on the right side above, we 
have t, E R, and vpt, = Q,,,+b(k). Q.E.D. 

LEMMA 3.3.2. Suppose (3.3.1) holds and a, b E B. Then 

Q P,g.ab@ = Qp,,,& + vpb) &,,.b(8. (3.3.2) 

Proof: We may assume 0 # a, b. There exist infinitely many negative 
integers k such that k < -vb (V = v,) and 0 # Qb(k) (= QP,g,b(k)). Since the 
Q’s are polynomials, it suffices to prove the formula with r specialized to 
such k. By Lemma 3.3.1, g-Obb . gk = t, gk, where vt, > 0 and qPtb = 
Qb(k) # 0 and hence vtb = 0. Again by Lemma 3.3.1, g-“‘a . gk+“btb = 
t, gk + Vbfb, where vt, > 0 and vP t, = Q,(k + vb), and similarly for 
g -rcab’ab . gk = tab gk. Then 

t,bgk = g-MOagubg-ubb . gk = g-ubg-uaa . gk+l,btb 

XT g-ubgk+ubfotb. 

Therefore tab = t, t, and 

Q&> = VP tob = (VP t,>h’ tb) = Q,(k + vb) Qb(k). Q.E.D. 

3.4. We shall call the roots of QP,,,b (<) the indicial roots of b relative 
to P (this being independent of g); if B = B(K) and P = (q - a) we shall also 
call them the indicial roots of b relative to a (in differential equations these 
are also called exponents). 

Suppose b E B. If P is a non-&invariant prime ideal of R, we shall say 
that b is preserving relative to P (or at a, if P = (q - a)) if there is no 
negative integer indicial root relative to P. We shall also say that b is 
preserving if it is preserving relative to P for every non-&invariant prime P. 
What it is that b preserves will be seen in Lemma 4.2, below. 

When B = 23(C), the property of b being preserving at a automatically 
holds at any ordinary point (since our definition implies that the indicial 
roots there are 0, l,..., k - l), while at one of the (finitely many) singular 



REPRESENTATIONS OF d(2) 83 

points the property is computable (that is, only finitely many negative 
integers need to be checked as potential roots). 

In the general case, if b = C b,x’ E B of degree k > 0, we define the 
special primes of b to be the non-&invariant prime ideals P for which v, b = 
v, b, - i for some i ( k (that is, v,, b, - k > v,, b, - i for some i < k). For such 
a P, tb, E P for every t E T such that tb E A, since if tb E A then - 

vPtbk = v,t + v,b, >, vPt + v,b, - i + k > 0. 

Hence b has onlyflnitely many special primes. If P is a non-&invariant prime 
which is not a special prime of b then b is preserving relative to P, since in 
this case v,b+j=v,b,-k+j<v,bjfor allj<k and so 

Qw, = 1f,4 g -“+kbk(ag)k} r(<- 1) . . . (r-k+ 1) 

has no root in 2 -. Hence the property of b being preserving depends on only 
finitely many primes. Also it obvious (either from the definition of Qtb or 
Lemma 3.3.2) that if 0 # t E T then b is preserving relative to P if and only 
tb is. 

LEMMA 3.4. Suppose 0 # d, ,..., d, E B. Then there exists s E S such 
that, for i = 1 ,..., j, d,s- ’ is preserving. More precisely, let {P, ,..., Pr} be 
those prime ideals which are a special prime of at least one of d,,..., d,, and 
let g, E P, - Pf (I= l,..., k). Also take v E N with v > v1 for every v, E Z+ 
(if any) such that -v, is a root of some g(P(, d,). Then for i= l,..., j, 
di( g, ... g,J-’ is preserving. 

ProoJ Set s= (g, . . . g$‘. Suppose w  E Z-. For each non-&invariant 
prime ideal P and g E P - P*, by Lemma 3.3.2 we have 

QV’, g, O-‘)(w) = Q(P, g, d,)(w + w-‘1 Q(P, g, s-‘)(w), 

which we must show is nonzero. We have Q(P, g, s-i) is a nonzero scalar. If 
p E {P, ,**-, Pk} then w+vps -‘=w-vps<w-v<-v and so 
Q(P, g, di)(W + vPs-‘) # 0. If P 6$ (PI,..., Pk} then w + vpsml E Z- SO again 
Q(P, g, d,)(w + v,,s-‘) f 0 since in this case, by the remark above, di is 
preserving relative to the nonspecial prime P. Q.E.D. 

3.5. The ring 23 = 8(K) (as with more general B) can be written as 
T[x], in more than one way, even with the same T = K(q). For example, 
23 = K(q)[Pl,,* = Gaul,,,&, . Suppose g E K[q] is manic irreducible. 
The definitions of v,, Q,,, (= Qts),s,b ) and preserving (relative to g) depend 
on the particular expression of 8. For example, the prime (q) of K[q] is a- 
invariant with respect to b = K(q)[qp],,ydq, but not with respect to b = 
m)[Pl,d,. When necessary for clarity in a statement we shall designate the 
expression of b with respect to which the detinitions are taken. 
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LEMMA 3.5. Suppose /3 E K, b = C a,(qp +/?)’ E b where a, E K(q), 
g E K[q] is manic irreducible, and v, and Q,,, are defined with respect to 
B = K(q)bl~dq. Then ifg = 4, 

v,b = min{v,a,}, (3.51) 

Qq,b(G = C Vq(q-““aj)(t + PY’, (3.52) 

while if g # q then 

v,b = min{v,ai - i), (3.53) 

Q,,&) = c rt,I g- “@-j(dg/dqy’daj} <(<-- 1) . . . (r--j+ 1). (3.5.4) 
j 

Proof. For any k, j E N, j < k, there are scalars ati, with ak,, = 0 if k > 0 
and with akk = 1, such that 

(vjk = i akjdti; 

j=l 

this can be seen by induction (in fact, the ati are the Stirling numbers of the 
second kind). Hence 

We thus have b = xi bjp’, where 

(3.5.5) 

Write v = vq and let I be the largest index such that vu1 = min{va,}. Then b, 
equals a,q’ plus terms on which v has higher value, that is, vb, = vu, + 1, and 
also vbj > vu, + j for allj. Hence vb = vu,, giving (3.5.1). With K(q) regarded 
as a d-module with p acting as d/dq, Lemma 3.3.1 implies that for k E N, 
there exists t E K(q) such that vl> 0, 

q-“bb . q-k = c q -Vbq(qp)i . q-k = tq-k, 

and q4 t = Q,,b(-k). But (4p +/I) . qek = (-k + p) qek and hence 

t = 2 q-“ba,(-k +/I)‘, Vq (~qevbai) C-k + P)' = Q,.b(-kh 
i 

and (3.5.2) holds for infinitely many values of r. 



REPRESENTATIONSOP 91(2) 85 

Next write v= vX and let 1 be the largest index such that vu/ -I= 
min{vu, - i}. Then for all j, 

vb,)min{vu,Ii)j})vu,-Ztj, 

and vb, = vu, since vu,)va,-Z+i>vu, if i>l. Hence min{vb,-j}= 
min{ vu1 - i} = vb. Also if i > j then vu, 2 vb t i > vb t j, and (3.55) gives 

?,b -“*-‘b,) = q,(g-“*-‘u,q’). 

Formula (3.5.4) follows from this and (3.2.1). Q.E.D. 

COROLLARY 3.5. The functions v~, us defined respectively with respect to 
8 = ~~~~Mdldq and 8 = Wdb + 81gwc1~ coincide; and when g # q the 
sume holds for Q8 (= Q,,J. 

ProoJ: This follows from a comparison of (3.5.3), (3.5.1) and (3.5.4) 
with (3.1.2), (3.1.3) and (3.2.1), since if a = qd/dq in (3.2.1) then the factor 
t&r,’ = WW’ 6. Q.E.D. 

4. THE SIMPLE MODULES OVER CERTAIN SKEW-POLYNOMIAL RINGS 

4.1. Throughout Sections 4.14.4, we continue assuming (3.1.1). For 
P a prime ideal of R, KP becomes an R-module by setting r . o = (q,,r)O 
(r E R, o E KP). Then we may form the induced A-module A OR KP. For 
rER we have 

rd=f: J 
(‘> f=o i 

(-1)’ x’-‘(air). (4.1.1) 

Hence A is a free right R-module with basis (x’ ) i ) 0}, every element of 
A OR K,, can be uniquely expressed in the form Cso x/ 0 oj where or E Kp 
(w, = 0 except for finitely many j), and 

rxk . ($0 w) = C xk+‘;’ 0 

f=O 
(-1)’ tlp(a’r)o- (4.1.2) 

If aP & P we also write, for the A-module A OR Kp, 

A OR Kp = V(P). 

In the Weyl algebra case, P = (g) for some manic irreducible g in K[q], 
and we write V(P) = V(g). Recall that Kp = Kt = K(a), where a = ?lrq (?,I~ 
the map K[q] + K[q]/(g) = K&. In this case we identify A OR Kp = V(g) 
with the polynomial ring K,[p] under the correspondence C x’ 0 o, ++ 
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C wj$; by (4.1.2), p acts on K,[ p] by multiplication and 4 acts as 
a - d/dp. 

If P is a &invariant maximal ideal of R, we write a for the derivation of 
R/P = Kp, r + P ++ & + P, induced by a. In this case C Px’ is an ideal of A 
and A/C Px’ z Kp[x]8 canonically. The simple Kp[xlB modules are just the 
quotients KP[~]z/Kp[~]ab, h w ere b is an irreducible element of Kp[x18. We 
regard these quotients as A-modules by pulling back along the canonical 
map of A to Kp[xlB. These A-modules are simple, and two of them (for the 
same P) are isomorphic if and only if the corresponding elements b are 
similar. Given a similarity class C of irreducible elements of KP[xla, we pick 
an element b E C (so that C = [b]) an write V(P, [b]) for the simple A- d 
module just described. 

PROPOSITION 4.1. Suppose (3.1.1) holds. Then any simple S-torsion A- 
module is isomorphic to exactly one of the following, all of which are simple 
S-torsion: V(P) (P prime, aP & P) and V(P, [b]) (P maximal, aP c P, [b] a 
similarity class of irreducible elements of Kp[x]&. 

Proof: If P is prime and aP d P, suppose M is a nonzero submodule of 
Y(P) and let j be the smallest index such that M contains an element 
m=~j=,xi@wi with miEK,, oj#O. Pick gEP-P2. Ifj>O then by 
(4.1.2) (and since r,rp g = 0) 

gm = xj-r @ -jrp(ag) wj + lower terms; 

but ag @ P and K, has characteristic 0, and so jq,(ag) # 0, contradicting the 
minimality of j. Hence j = 0, 1 OK, EM, M = V(P), and V(P) is simple. 
The simplicity of V(P, [b]) has already been discussed. 

Now suppose M is a simple A-module and there exists 0 # m E M such 
that I = (ann m) n R # 0. Since R is noetherian of Krull dimension <l, R/I 
contains a minimal ideal J/I. Thus the annihilator in R of J/I is a maximal 
ideal P. Moreover R/Iz Rm and so there exists 0 # n E Rm such that 
Pn = 0. Let i be the R-map R -+ M with [r = rn. Then ker c = P, and we get 
an R-map c of Kp = R/P to M. By the universal mapping property of an 
induced module, there exists a unique A-map c’: A OR Kp + M such that 
r”1= r’, where I is the canonical map Kp + A OR Kp. If aP &P then 
A OR Kp = V(P), and since c # 0 and both V(P) and M are simple, c is an 
isomorphism. On the other hand, if aP g P then the ideal C Px’ s C x’P by 
(4.1.1), and (C Px’)M = (C Px’) An G (2 x’P)n = 0. Hence M may be 
regarded as a module over A/C Px’ z Kp[x13, and ME V(P, [b]) for some 
[b] as indicated. In V(P), since aP @ P, (4.1.2) implies that elements of 
R -P act injectively on V(P), that is V(P) uniquely determines P. Similarly, 
since V(P, [b]) can be regarded as a K,-module, again elements in R -P act 
injectively. This gives the desired uniqueness. Q.E.D. 
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COROLLARY 4.1. A OR Kp z A/AP. 

ProoJ The composite R-module map R + A + A/AP has kernel P, hence 
gives an R-map Kp = R/P+ A/AP. By the universal mapping property this 
R-map extends to an A-map K: A OR Kp --) A/AP which is obviously 
surjective. If aP $Z P then A OR Kp is simple and II is an isomorphism. 
Suppose aP c P. Every element of A is uniquely expressible as JJ x’ri. 
Writing F for the image in Kp = R/P of r E R, we have 

kera= /xx’@F[ Izx%,EAP/. 

But AP = 2 xiP and so C x’rf E AP if and only if ri E P for all i. Therefore 
ker n = 0 again. Q.E.D. 

4.2. Suppose r E R, a E A, [a, r] E R and j E N. Then 

j-1 
r-42 = iG (ra - i[u, r]). (4.2) 

Indeed, if the formula holds when j = k then 

(ru - k[a, r]) rkuk = rulkuk - k[u, r] rkuk 

= rr%uk + krrk-’ [a, r] uk - k[u, r] r%zk = #+ ‘ukfl, 

giving it forj= k+ 1. 
Observe that A OR Kp is not only an A-module but actually an R,[x],- 

module (where R,[x], equals the subring of B generated by R, and x); here 
the action is given by (4.1.2) for r E R,. Indeed the induced R,[x],-module 
R, [xl8 ORP Kp can be identified with A OR K,, since the elements of each are 
uniquely expressible in the form C x’ @ o, (u+ E Kp). Also observe that if 
b E B then the coefficients in g-““b (where v = v,) are in R,, and hence the 
action of g-““b on A OR Kp is detined. 

LEMMA 4.2. Suppose (3.1.1) and (3.3.1) hold, a E B, and k E Z+. Then, 
for the action on A OR Kp, 

g -Q% . (xk-l @ 1) = xk-l 0 Qp,,,,(-k) + m, 

wheremExk-*@Kp+...+lOKp. 

Proof: Write v = v,, a = G a,~‘. Then by (4.1.2), 

gx * (xk-’ @ &$@g)j) = xk-1 0 (-k) q&Yg)i+ ’ + lower terms. 



88 RICHARD E.BLOCK 

Also g- ““-jaj E R, for each j. Hence, by (4.2), 

L! -“aa . (xk-’ @ 1) 

= C g--ja,g’xj . cXk-l 0 1) 

=~g-““%j(gx-(j-l)~g)..~ (gx-ag)(gx) 
i 

r -m-j 
=Lg aj. {x”-l@(-k-(j-l))...(-k- 

i 
+ lower terms} 

* (xk--l @ 1) 

1 N-k) tlP(W’ 

= xk-’ 0 QP,,,,(-k) + lower terms. Q.E.D. 

COROLLARY 4.2. The element a is preserving relative to P if and only if 

l.7 -“*a acts injectively on V(P). 

4.3. We now exhibit some nonmaximal left ideals of certain A, and 
then some maximal left ideals. 

LEMMA 4.3. Suppose (3.1.1) holds, P is prime, ~PcP, b=C bjX’E B 
with b, # 0, and bj/b, C$ PR, for some j > 0. Then (A n Bb) + 2 Px’# A, 
and in particular the left ideal A n Bb of A is not maximal. 

Proof: It suffices to show 1 6? (A n Bb) + 2 Px’; suppose not. Then 
1 = ab + d, where d E JSJ Px’ (= C x’P). Write v = vP, which is defined by 
(3.1.3) in this case. Without loss of generality we may assume that vb = 0. 
Since vd > 0 and ul = 0, we have 0 = v(ab) = vu. There exists a largest index 
k such that vuk = 0 and a largest index I such that vb, = 0. By the hypothesis 
on bj/bO, 1> 0. By (3.1.4) the coefficient of xk+’ in ab is 

We have 

If i< j<k or i=j<k then vbk+,...i > 0; if j > k then vaj > 0; while in the 
remaining case, i = j = k, the inequality becomes an equality. Hence 
VW) k+[ = 0. But k + 1 > 0 since 1 > 0, and vdk+, > 0, contradicting 
1 =ab+d. Q.E.D. 
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We single out the contrary of the hypothesis of Lemma 4.3 on the coef- 
ficients b, of an irreducible element b = C b$ of B: 

If there exists a a-invariant prime, then (coefficient of 
x0) # 0 and for every j > 0 and every &invariant prime P 
(coefficient of x’)/(coeficient of x0) E PR,. (4.3) 

THEOREM 4.3. Suppose (3.1.1) holds and that b = C b,x/ E B is 
irreducible and preserving. Then the (S-torsionfree) A-module A/A n Bb is 
simple if and only af b satisfies (4.3). 

ProcJ Obviously A/A n Bb is S-torsionfree. We will apply Lemma 2.3. 
We may assume R is not a iield, since otherwise A = B and (4.3) is vacuous. 
Suppose M is an S-torsion simple A-module. By Proposition 4.1, M z V(P) 
for some non-&invariant P or Mr V(P, [a]) for some &invariant P and 
some [a]. Suppose first that M 2 V(P), take g E P - P2 and write v = v, and 
d = gVvbb. Since b is preserving relative to P, dM is injective, by 
Corollary 4.2. Also d E Bb and vd = 0; in particular, vd, ) j for all j, and so 
dE 444P Clearing denominators by left multiplying by a suitable 
r E R -P, we have rd E A n Bb and (rd), is injective since r,,, is injective. 
Next suppose M z V(P, [a]) and b,/b, E PR, for all j > 0. Again take 
gEP-P2, write v = v,, and set d = gmvbb. Then vd, = 0, that is, 
do E R, - PR,, and vd, > 0, that is, d, E PR,, for all j > 0. The module 
V(P, [a]) may be considered as an R,[x],-module, since the canonical 
homomorphism A + K,,[x],, 2 c,x’ I+ C q,(c,) xi, is actually defined on 
R,[x],. Then d,x’V(P, [a]) = 0 for all j > 0, do acts as the nonzero scalar 
MO on V, [aD9 and hence d,,, is injective. Again clearing denominators 
we get an rd E A n Bb acting injectively on M. It now follows from 
Lemma 2.3 that if (4.3) holds then A/A n Bb is simple. On the other hand, if 
(4.3) does not hold then, by Lemma 4.3, A/A r7 Bb is not simple. Q.E.D. 

4.4. We now give the main result on simple A-modules for A as in 
(3.1.1). 

THEOREM 4.4. Suppose (3.1.1) holds and N is a simple B-module. The 
following three conditions (4.4) are equivalent: 

Sot, N # 0; (4.4.1) 

for some b E min ann N, (4.3) holds; (4.4.2) 

for every b E min ann N, (4.3) holds. (4.4.3) 

Suppose that 0 # n E N, b is a minimal annihilator of n, and s, which may be 
calculated as in Lemma 3.4, is such that s E S and bs-’ is preserving. If 
(4.4) holds then Asn (z (As + Bb/Bb) is a simple A-module (in particular, 
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sn E Sot, N = AM). Every S-torsionfree simple A-module arises in this way, 
and from an N which is unique up to isomorphism; that is, 

A* (S-torsionfree) + Be((4.4)), [Ml w  [S-‘M], 

is a bijection, with inverse [N] I--+ [Sot, N] Vor N satisfying (4.4)). 

Proof: Suppose a E min ann N. By Lemma 3.4 there exists s E S such 
that b = as-’ is preserving. Then b is similar to a and so B/Bb g N. If 
(4.4.3) holds then by Theorem 4.3 the A-submodule (A +Bb)/Bb g 
A/A n Bb is simple and so equals Sot, B/Bb by Lemma 2.2.1. Hence (4.4.3) 
implies (4.4.1). Now suppose (4.4.1) holds and let M be a simple submodule 
of AN. Then M is S-torsionfree, and it follows from Lemma 2.1 that there 
exists an irreducible d E B such that Mz A/A r7 Bd. Hence A n Bd = 
arm, m for some m E M, and so Bd = anng m and d E min ann N. By 
Lemma 4.3, d satisfies (4.3). Hence (4.4.1) implies (4.4.2). To show that 
(4.4.2) implies (4.4.3) we claim first that if 0 # t E T and a = 2 ajx’ 
satisfies (4.3), then at satisfies (4.3). Thus, by (3.1.4), 

at=vI‘ f YY 
0 ij>i 1 

aj(lFit) xi = (at)i xi. 

Suppose 3P c P and write v = v,. Then v(8t) > vt, (at),, = a, t plus terms 
with higher v-value, and hence v(at), = va, + vt, while every term of (at)i, for 
i > 0, has higher v-value than va, + vt. This proves the claim. Now suppose 
a E min ann N satisfies (4.3). By Lemma 3.4 and the claim just proved, we 
may suppose that a is preserving. By Theorem 4.3, A/A n Ba is simple. 
Suppose b is similar to a. Thus there exists d E B - Ba such that bd is an 
1.c.l.m. of a and d. We may write d = s-‘d’ where s E S, d’ E A. Then bs-‘d’ 
is an 1.c.l.m. of a and d’ and d’ 6Z Ifa, that is, bs-’ is similar to a by 
transforming by d’. Also bs- ’ satisfies (4.3) if and only if b does. Hence in 
proving that b satisfies (4.3) we may assume that d E A. We have A/A n Ba 
is S-torsionfree simple with canonical generator m = 1 + A, and arm, m = 
AnBa. Then dm # 0, bdm =0 and A nBbC annA dm. Also if 
b’ E annA dm then b’d E arm, m = A f7 Ba, b’d is a left multiple of a and d 
and so of bd, and hence b’ E A n Bb. Therefore the left ideal A nBb = 
annA dm is maximal, and so, by Lemma 4.3, b satisfies (4.3). Thus (4.4.2) 
implies (4.4.3). The next statement follows from Lemma 3.4, Theorem 4.3, 
and Lemma 2.2.1. The statement about the bijection of A- (S-torsionfree) to 
B-((4.4)) follows from Lemma 2.2.1. Q.E.D. 

We recall that R is called &simple if R has no &invariant ideal #O, R. 

LEMMA 4.4. Suppose (3.1.1) holds. Then R has no &invariant prime 
ideal if and only if R is a-simple. 
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Proof: Suppose R has no &invariant prime ideal and let I be a maximal 
a-invariant ideal. Then R/I is &simple (where a is the induced derivation on 
R/Z). Since R is noetherian of Krull dimension <l, if Z # 0 then R/I has a 
minimal ideal. If P is a prime ideal containing I then R/P has characteristic 
0. Hence R/I has characteristic 0 and, by [7] or [30], R/I is simple, that is, 
I is prime, a contradiction. Q.E.D. 

COROLLARY 4.4.1. Suppose (3.1.1) holds. A necessary and suflcient 
condition for the canonical injection S- ‘: A- (S-torsiorzfree) + B1, [M] H 
[S- ‘Ml, to be bijective is that R be a-simple. If this condition holds 
(example: A = %, the Weyl algebra) then every simple S-torsionfree A- 
module is isomorphic to some A/A n Ba with a irreducible and preserving, 
two of these A-modules being isomorphic tf and only if the corresponding a 
are similar. 

Proof If R is a-simple then (4.3) holds vacuously. Conversely, if there 
exists a &invariant P then B/B(x + 1) is simple and Sot, B/B(x + 1) = 0. 

Q.E.D. 

The other extreme, when the canonical injection has empty image, can 
also be characterized. 

COROLLARY 4.4.2. Suppose (3.1.1) holds. Then A- (S-torsiorzfree) is 
empty tf and ont’y if there are infinitely many &invariant primes P. 

Proof. If there are infinitely many &invariant P then the intersection 
fi PR, over all such P is zero, and (4.3) never holds for an irreducible b. 
Conversely, if there are only finitely many &invariant P, then their inter- 
section contains a nonzero element d, dx + 1 satisfies (4.3), and N= 
B/B(dx + 1) is simple with Sot, N # 0. Q.E.D. 

4.5. We remark on the commutative case, that is, when 8 = 0. Then 
A = R [x] (commutative polynomials), and (3.1.1) reduces to the hypothesis 
that R is Dedekind. Simple A-modules correspond to their annihilators, that 
is, to the maximal ideals of A, and S-torsionfree simple modules correspond 
to the maximal ideals I such that In R = 0. Thus in #is case A- (S- 
torsionfree) is nonempty if and only if In R = 0 for some maximal ideal of 
R[x]; this latter condition is equivalent to R being a G-domain (see [19]). 
Lemma 4.3 above remains valid if, instead of assuming R Dedeind, one 
merely assumes that R is a Krull domain and P is a height one prime (so 
that v, is defined). Thus we obtain the following classification of the 
maximal ideals of R [x] contracting to 0.’ Here fl ,P denotes the intersection 

I The fact that they are all principal is covered (in.a quite different way) by [ 19, Ex. 11, 
p. 421; the finer details appear to be new. By contrast, in 9I the maximal left ideals contracting 
to 0 in K[q] are not all principal. 
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of all nonzero prime ideals of R. Actually the generalization from R being 
Dedekind to R being Krull evaporates since R is a Krull G-domain if and 
only if R is a principal ideal domain with only finitely many prime ideals. 

COROLLARY 4.5. Suppose R is a Krull domain but not afield. An ideal I 
of R [x] is maximal and satisfies R n I = 0 tf and only tf I = (b) for some b 
which is irreducible (in T[x]) and of theform b = 1 + Ci>o rixi wherefor all 
i > 0, ri E n P. 

Proof Suppose Z is maximal and In R = 0. We have I = R [x] n T[x]b 
where b = C bixi is irreducible. Then b, # 0 (otherwise b = b,x, I= 
xi,,, Rx’ and R is a field). By Lemma 4.3, bJb, E n PR, = n P for all 
i > 0. Dividing by b, we may assume that b, = 1. If (2 tixi)b E R [xl, where 
ti E T, and if t, ,..., tj-, ER(forsomej>O)thentj+tj-,b,+...+t,,bjER, 
and hence tj E R. Therefore R [x] n T[x]b = R [x]b is principal. Conversely, 
if I has the given form then R has only finitely many primes. The argument 
just given shows that Z = R [x] n T[x]b, and the latter ideal is maximal (say, 
by Theorem 4.3 if one wants to stick to the methods of the present paper). 

Q.E.D. 

5. THE SIMPLE MODULES OVER 51(2,K) 

5.1. Let 5 be the Lie algebra el(2, K) over the field K (of charac- 
teristic 0). We take the usual basis e,f, h where [h, e] = 2e, [h, f ] = -21; 
[e, f ] = h, the usual Cartan subalgebra Kh, positive root vector e, and Bore1 
subalgebra b = Kh + Ke. We write c for the Casimir element 

c = 4fe + h2 + 2h = 4ef + h2 - 2h = 2ef + 2fe + h2 E Us. 

It is well known that the center of Us is K[c]. By Quillen’s lemma, if M is a 
simple Us-module then c, is algebraic, hence a scalar if K is algebraically 
closed. 

We begin with a simple lemma which, in particular, expresses sI(2, R)* in 
terms of eI(2, C)^(c, E C -R) and sl(2, R)-(c, E R). If K’ is an extension 
of the base field K and M’ is an eI(2, K’)-module, J4’ denotes here the 
pullback along the inclusion map B = el(2, K) + 51(2, K’). 

LEMMA 5.1. If M’ is a simple module over sl(2, K’) where K c_ K’ c K, 
c,, E K’ and K(c,,,,) = K’, then the restriction J!’ is a simple e-module, and 
every simple s-module arises in this way from exactly n such M’, say, 
M , ,..., M,, with K’ = K(y,) ,..., K(y,), respectively, where y, ,..., y, are the 
roots of the minimal polynomial of c, and cMi = yi (and no two Mi are 
isomorphic). 
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Proof. Clearly w  is simple, since c E Us. Conversely, suppose M is a 
simple s-module. By Quillen’s lemma, c, is algebraic, and by Schur’s lemma, 
the minimal polynomial g of c, is irreducible. Let y1 ,..., y,, be the roots of g 
in E. Picking a yr and setting y,m = cm (m E M), we get a K(y,>structure on 
M, and hence an sI(2,K(y,))-module M, with J4, =M. Now suppose 
M =#’ where M’ is a simple eI(2, K(y))-module and c,, = y. Then y is a 
root of g, say, y = y,. Since a and yr generate UsI(2, K(y,)), M’ = M,. Q.E.D. 

A similar phenomenon holds for the three-dimensional Heisenberg Lie 
algebra h, with z in place of c where 0 # z E Center h. 

5.2. Suppose I E K. Let K’ = K(rE), s’ = 51(2,K’), and b’ = 
K’h + K’e. We identify I with the linear functional on the Cartan subalgebra 
K’h of s’ whose value on h is 1. Then M(A) denotes the corresponding 
Verma module, that is, the induced Us’-module Us’ &,, K where here K’ is 
regarded as a b/-module with e . K’ = 0 and h IK, = L - 1. Also L(J) denotes 
the unique (absolutely) simple quotient module of M(d). Thus L(A) = M(n) if 
A 6$ Z+ while if 1 E Zf then L(I) is the module of dimension I. We have 
C L(A) = A2 - 1. 

Associated to M(A) we get a realization of 8’ (and hence of a) by 
differential operators on the polynomial algebra K[t], as follows (this is a 
special case, for s’, of the Conze mappings [ 111). The mapping 

is a linear bijection of K’[c] to M(rZ); let cpI be the representation of s (or 
Us) in K[[] obtained via this bijection from the representation of s (or Us) in 
M(A). Thus, writing p = d/&I and q = multiplication by 5; we have cpI f = q, 
~Pnh=-2qp+IZ-l,(p,e=-(qp-~+l)p.Weshallactuallyusep_,=~,~ 
rather than v)~, where r is the automorphism of s given by re = f, rf = e, 
rh = -h, and we shall also denote by p-A the extension of p-* to Us. Thus 
pA is the algebra homomorphism of Us to the Weyl algebra 9[(K’) (or to 
S(K’)) with 

pAe=q, p,h=*+f.+ 1, pAf =-(w+A+ l)p. (5.2.1) 

We now define another family of mappings of Us, this time to 23 = S(K). 
Given y E K, we define a linear map by of a to 8 by 

o,e = 4, qh = %P, $f = ((1/4)Y - m2 - WI 4-l 

(= (l/4) YCl - w2). 

Then [a,h, a,e] = 2uye, [u,h, uyf] = -2uJ, and [up, uyf] = [q, -qp2] = 
2qp = u,h. Hence cry extends to a homomorphism (also denoted u,,) of Us to 
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8. We have UsGK[q,q-‘,p] =K[q,q-‘][p],,,. Also u,,=p-,. We write 
a(y) for up and p(A) for pn when using these symbols as subscripts (indicating 
pullback). 

Suppose y E K. The algebra Ua/Ua(c - y) will be denoted by Us, (this was 
called R,, in [ 161) and the canonical map Us + US, by rrY. If u E US, rryu will 
also be denoted by ti. The multiplicative subset K[C] - {O) of Us, will be 
denoted by L?. 

Straightforward calculations show that 

P,C=Y, pAc=A*- 1. 

Hence US(C - r) G ker uy. But (see [ 161) U5, is simple except for y = n* + 2n 
(n E N), in which case U5, contains a unique ideal ~0, U5,, this ideal being 
of codimension (n + l)*. Since u,U5 is infinite dimensional (containing all 
q’), it follows that ker uY= US(C - 7). We denote by 6, the induced map of 
Us,, to b; thus a,~,= cry. In particular (restricting the co-domain), ~7, may be 
regarded as an isomorphism of Us, to u,U5. 

Suppose J E K. Taking y = A2 - 1, we have Us(c - y) C_ ker pn, and hence, 
as before, U5(c - y) = ker pn. We denote by PA the induced map of Us, to d. 
Thus PAn,== pA, and pa may be regarded as an isomorphism of Us, to pA Us. 

The ring 23 is a localization at S = K[q] - {0} of u,U5 since it is a 
localization at S of K[q, 4p] G zyU5. Similarly, if L E K then 2.3 is a 
localization at S of pn US. Since 6$ = S, we have the following result. 

LEMMA 5.2. For y E K, Us, has a (two-sided) localization at g= 
K[tT] - {0}, and ~7~ (respectively PA if A E K satisfies I* = y + 1) extends to 
an isomorphism, also denoted ~7~ (respectively PA), of s-‘U5, to 8. 

5.3. Suppose d E K[<] is manic irreducible, L E E is a root of d and 
K’ = K(A). We form the highest weight module L(n) over 5' = el(2, K’) and 
regard it as a module, denoted L(d) (or also L(A)), over 5 c 5'. It is easily 
seen that L(A) remains simple under the restriction to B of the operating 
algebra (L(L) = M(L) if L @ K). Also L(A) as an e-module is uniquely deter- 
mined up to isomorphism by d, justifying the notation L(d). 

If d = r - 1 then L(d) = L(L) is just the usual highest weight module over 
US. If 2 @K, the Us-module L(d) is an induced module. Indeed we can 
regard K’ as a L&-module with eK’ = 0 and h acting by multiplication by 
1 - 1, and form the induced Us-module Us mu,, K’. The latter is simple, by 
the usual argument. If v is a maximal vector of the &module L(A), then the 
map K’ + K’v, w t-+ WV, is a Ub-isomorphism which by the universal 
mapping property extends to a Us map of U5 sub K’ to L(d). Since both 
US C&, K’ and L(d) are simple, this Us-map is an isomorphism. 

Now suppose g E K[q] is manic irreducible. Recall that K, = K[q]/( g), 
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a = flrq (so that Kg = K(a) and g(a) = 0), and V(g) is the induced %-module 
go xII1 Kb. As in Section 4.1, V(g) is identified with K,[ p] with p acting by 
multiplication and q acting as a - d/dp. If 1 E K then we consider the Us- 
module V(g),,,, obtained by pullback along pA . Writing V( g),o, = KB [p] 
we have, by (X2.1), 

e - (cod) = cm# -jopi-l, 

h+Jp/)=2aw~+‘+(-2(j+l)+L+l)w~, 

f.(od)=-aod+*+(j+2-~-1)wd+l 

for all w  E Kb, j E N. 

(5.3.1) 

(5.3.2) 

(5.3.3) 

Suppose g # q, that is, a # 0. Then q acts bijectively on V(g), and V(g) 
can be considered as a K[q, q-l, PI-module. Hence by pullback along cry we 
have the Us-module V(g),,,. We have e . pi = ap’ - ipie and h . p’ = 
2ap’+ 1 - 2(i + 1)~‘. The basis {p’} being rather inconvenient for expressing 
the operation by f, we indicate another basis. Since qpvta, = 
(a~ - (d/dp)p)v(gj 9 it is clear that { (qp)’ . 11 i E N} is also a Kg-basis of 
V(g). We write (here) (qp)’ . 1 = y’ and thus identify V(g) (as a vector 
space over Kb) with the polynomial ring K,[y]. Then for a(y) E K,[y] we 
have(usingq(qp)=(qp-l)qandq-‘(qp)=(qp+l)q-l) 

h * U(Y) = 2Ya(Y)y e - U(Y) = a(u - lb, 

f - 4~) = ((1/4)~ - Y* - Y) 4~ + 1) 6. 

The special case a = 1 gives modules introduced by Amal and Pinczon [2]. 
We can regard Kg as a K[e]-module with e . w  = ao (w E K,), where 

a = qrq, and form the induced n-module 15% @xIel K,. We shall also 
consider the Us- (or Ub)-module 

U5JU5,g@) = U5/(Us(c - y) t Ueg(e)), 

which we denote by Us,,. 

LEMMA 5.3. Suppose g E K[q] is manic irreducible, g # q, y E K. Then, 
us Ub-modules, the following are simple and isomorphic: ub OKIel Kb, Us,, , 
vm,, 9 and (provided L E K and A* = y t 1) V( g),o,. 

Proof: Every element of Ub @xtel I K has a unique expression of the form 
Ch’Oq, wI E Kg. Since g(e) KB = 0 and eh = (h - 2)e, we have e’h’ = 
(h - 2i)’ e’, and 

g(e) h’ @ co = h’- ’ @ (-2j) g’(e) eo t lower terms (w E K,), (5.3.4) 

from which it follows that Ub @xtc, Kg is simple. The map K,+ Us,,, 

607/39/l-7 
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d(q) + (g) I+ d(F) + Us,g(C), is a K[e]-module map, hence extends by the 
universal mapping property to a I/b-map n of Ub @xlel K, to Usng. Since 
mc3 xtel Kg is simple, K is injective. To show that rr is surjective, it suffices 
to show that fi + Us,g(P) E im 7~ for all i. Suppose this holds for i = l,..., j. 
It follows that J’hkP’ + Us,g(g) E im x for all k, 1. There exist s, t E K[q] 
such that sq + tg = 1. Taking congruences in Us, module Us,g(P), we have 
&s(Z) z i and 

and so n is surjective and hence a Ub-isomorphism. Also we see that 

e . Us,, = Us,,. (5.3.5) 

We next consider V(g),,,, when 2 E K and A2 = y + 1. We have 

g(e) . i w,p’ = g(a - d/dp) . 2 wipi 
i=O i=O 

= -jg’(a) ojpi-’ + lower terms, 

from which it follows that V(g),o, is simple as a C&module. The identity 
map of K,, regarded as a map of the subspace 10 K, of Ub @xlel K, to the 
subspace K, of K,[ P] = Wr)pclj, is a K[e]-map. This extends to a U&map 
of ub @x[e~ K, to W),,,,, which is an isomorphism since both Ub OKIel K, 

and W),,,, are simple as Ub-modules. Finally, for any y E K, cr./ coincides 
on Ub with pP1 and hence V(g),,, = V(g)+,) g Ub OKlel K, as Ub- 
modules. Q.E.D. 

PROPOSITION 5.3. Suppose y E K. Then 

U5*(K [e]-torsion, c, = y) 

= { Py,,l I g E %I manic irreducible, g # q} 

U{[L(d)]]d=<4,&KJ*=y+ 1 

or d = <* - y - 1 irreducible}, 

the isomorphism classes indicated on the right side all being distinct. 

Proof: It follows from the above remarks and Lemma 5.3 that the classes 
on the right side are in the left side. 

Suppose M is a simple K[e]-torsion Us-module with c, = y. There exists a 
manic irreducible g E K[q] and 0 # m E M such that g(e)m = 0. Suppose 
first that g # q. Since g(e)m = 0, we have a K[e]-map K,-+ K[e]m, a(a) = 
a(q) + (g) I+ a(e)m. This extends to a Ub-map of Ub OKle, K, to M. 
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Therefore by Lemma 5.3 there is a nonzero Ub-map, say IL, of M’ = Us,, to 
M. In both M’ and M, 4fe + hZ + 2h acts as y. Hence, for u E M’, 
ndf.(e.o))=n(dfe).v)=dfe).m,=f.n(e.u). But eoikf’=M’ by 
(53.9, and so n is a Us-map. Since both M’ and M are simple, n is an 
isomorphism. 

Suppose next that g = q, that is, em = 0. The null space N of e is h- 
invariant and h* + 2h - y = 0 on N. If h has an eigenvector in N, say hn = 
(~-1)n(~EK),then0=(h2+2h-y)n=(~*-1-y)nandso1*=y+1, 
n is a maximal vector, and MrL(A) = L(d), where d = <- d. Suppose 
finally that h has no eigenvector in N. Let d = <* - y - 1 and K’ = K(A), 
where~isarwtofd.OnN,d(h+1)=h2+2h-y=O.IfrZwereinK,we 
would have (h + 1 - l)(h + 1 + A) = 0 on N and h would have an eigen- 
vector in N, a contradiction. Hence L & K and d is irreducible. Regarding K’ 
as a Ub-module with e . K’ = 0 and h acting by multiplication by Iz - 1, we 
have a K-linear map n: K’ + Km + Khm with al = m and %l = (h + 1)m. 
Then x is a U&map since x(e . K’) = ea(K’) = 0 and 

n(h.rl)=n(lZ*-IZ)=x(y+ I-A)=@-h)m=(h*+h)m=h.nA. 

Hence n extends to a Us-map 7~’ of L(d) g Us C&K’ to M, and since L(d) 
and M are simple, n’ is an isomorphism. 

In Ub OKtel K,, and hence also in UsY,I, g is the unique manic irreducible 
polynomial for which g(e) annihilates a nonzero element, as follows from a 
formula like (5.3.4). Also, in L(d), d is the unique manic irreducible 
polynomial for which d(h + 1) annihilates the null vectors of e. This proves 
the uniqueness statement. Q.E.D. 

COROLLARY 5.3.1. Suppose y E K and g # q is manic irreducible. Then 
Us,, E V(g),,, (as Us-modules). Zf I E K and A* = y + 1 then also Us,, E 
V(d,,A, - 

If K is algebraically closedY I E K, g = q - a # q, and we identify a with 
the linear functional on Ke with ae = a, then, in the terminology of Kostant 
[21] (specialized here to be case of e), the coset containing f is a cyclic 
Whittaker vector of Us,, with respect to a. Moreover Us,,, is the unique (up 
to isomorphism) Whittaker module V with respect to a whose corresponding 
central ideal is 

(centerUs)nannV=K[c](c-rZ*+l) 

[21, Theorem 3.11. The fact that Us,, is simple reflects the fact that the ideal 
K[c](c - 1* + 1) is maximal in K[c] [21, Theorem 3.6.11. 

Thus in the algebraically closed case, Proposition 5.3 reduces to the 
known fact that the simple &-modules for which e has an eigenvector are 
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the highest weight modules and the simple Whittaker modules. It is 
interesting that each of these modules occurs as an essential submodule of an 
appropriate V(g),,A, 9 as the following result shows. 

COROLLARY 5.3.2. Suppose A E K and g E K[q] is manic irreducible. 
Then the Uwnodule V(g)p(Aj contains an essential simple K[e]-torsion 
submodule V(g);,,, , and 

v(g);,,, = W),o, if gf4; 

= Ud,(,l, z M(l) = L(A) if ll6cz+; 

a-1 
= x Kp’rL(A) if AEZ+. 

i=o 

ProoJ If g # q the result follows from Lemma 5.3. Suppose g = q, that 
is, a = 0 and K, = K. Then, by (5.3.1) and (5.3.2), 1 = p” is a maximal 
vector and has weight A - 1. If A @ Z + then the coefficient j + 2 - L - 1 in 
(5.3.3) never vanishes, 1 generates V(q)pCAj, and the canonical map of the 
Verma module M(A) to V(q)pfAj ( o bt ained by the universal property of the 
induced module) is an isomorphism (see [ 15, Prop. 7.1.81). If L E Z+ then 
cf:ol Kpj is a simple submodule which intersects any nonzero submodule, 
by (5.3.1). Q.E.D. 

5.4. We turn now to the simple K[e]-torsionfree Us-modules for 
which c acts as a scalar, say y. For u E Us, the isomorphism 6,: Us,+ a,& 
induces a Us,-module isomorphism 

uqus,n s-‘u5,l-i Lz (uyu5/uyu5 f-l %kq,u),-,,, 

and of course a corresponding isomorphism for the Us-module obtained by 
pullback along ny. Thus 

where we write 

WU, Y)= (q5/~,u5n~~,~),~,,, (5.4.1) 

M(u, y)= (u5pp s'-'u5&,,. 

Similarly, if A E K and I2 = y + 1 then g,, induces a &,-module isomorphism 

U5JU5,nS-'U5,li~ @AU5/p,Usn dp,u),-,,, 

and a corresponding Us-module isomorphism. 
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LEMMA 5.41. Suppose L E K and y = A2 - 1. The map P-&‘: p,, Us --t 
- --I. pmA Us (respectively, pAo, . a,Us + pA Us) extends uniquely to an 

automorphism (denoted by the same symbol) of 8, ftxing q and sending p to 
p - Iq-’ (respectively, to p + f(A + 1) q-l). 

ProoJ: Any b E B can be uniquely expressed as 

b = c a&p + A + I)‘, ai = add E K(q). 
Pick s E S such that sa, E K[q] for all i. Then 

P-d.i ‘sb = P-&‘P, c @a,)(e) h’ = s C a,(@ -A+ I)‘, 

giving uniqueness, and the result for the tirst map follows since there does 
exist an automorphism fixing q and sending p to p - Aq-‘. The result for the 
second map is obtained similarly. Q.E.D. 

As a consequence of the lemma, if 1 E K and u E Us then pA u and pmAu 
have the same degree, and pAu is irreducible in 23 if and only if penu is 
(which by Lemma 5.2 is also equivalent to u being irreducible in S-‘Us,,). 

LEMMA 5.42. Suppose u E Us, y E K, L E K, and A2 = y + 1. Let G 
denote the set of manic irreducible polynomials in K[qJ. The following 
conditions (5.4.2) are equivalent: 

p,, u, p-., u are preserving at q, and uyu is 

preserving at every g E G - {q}; 

pn u is preserving andp-, u is preserving at q; 

p,, u and p -A u are preserving. 

(5.4.2.1) 

(5.4.2.2) 

(5.4.2.3) 

For a E B the following conditions (5.4.3) are equivalent: 

tiA#,-‘a, p-,@,-‘a arepreserving at q and a is 

preserving at every g E G - {q}; 

a is preserving and p’-,P-,- ‘a is preserving at q; 

a andp-& ‘a arepreserving. 

(5.4.3.1) 

(5.4.3.2) 

(5.4.3.3) 

Proof Left multiplying u by a suitable power of e we may assume that 
uyu = C a,(w)‘, where a, = a,(q) E K[q 1. Hence 

C = 2 a,(Z)(h/2)‘, 

607/39/l-8 
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If g E G - {q}, then by (3.5.3) and (3.5.4), the indicial polynomials at g of 
oYu, p,u and P-~U are the same. The last part of the lemma is a restatement 
of the first; we are regarding the automorphisms as maps of d(E) and using 
the fact (Lemma 3.2) that the notion of preserving does not depend on the 
base field. Q.E.D. 

THEOREM 5.4. Suppose y E K, u E US, ii is irreducible in ~-‘US, 
(equivalently, o,,u is irreducible in %3) and u satisfies (5.4.2). Then the US- 
module M(u, y) is simple (and K[e]-torsionjiiee, with c~(,,~, = y). 

Proof. We write A = o&k, B = 93, S = K[q] - {O}. Thus B = S-‘A. We 
also write a = uYu, and have a = C ai(q where ai = a,(q) E K[q, q-l]. We 
shall apply Lemma 2.3 with L = Ba. Let M be a simple S-torsion A-module. 
Then M’ = Mafy) is simple K[e]-torsion and c,, = y. Hence M’ z V(g),,, g 
Us,, or L(d) as in Proposition 5.3. Suppose first that M’ z V(g),(,, (in 
parttcular g # q). Since a is preserving relative to g, Lemma 3.2 implies that 
a is also preserving at a, where a is a root of g (in K). Let K’ = K(a) and 
apply Lemma 4.2 (with Q(K’), ‘u(K’), R’ = K’[q], P’ = (q - a) in place of B, 
A, R, P), recalling the canonical identifications K, = K[q]/( g) = K’ = 

K’kllb - a) = Jb and V(g)=K,[p]=K,,[p]=‘U(K’)@,,K,,. Notethat 
gEP’-P12, and vga=vqpa a since g is separable. Write vu = v8a. By 
Lemma 3.5, vai > vu for all i. Therefore g-“‘ai E K[q, q-l] for all i. Let k be 
the smallest element of N such that qkgevaai E K[q] for all i. With 
(qkg-““a,)(e) denoting the element of K[e] obtained by substituting e for q, 
we have 

qkg-‘(la = uyc (qkgeuaai)(e)(h/2)’ E A n 93a. 

By Corollary 4.2, g-“a IV(g) is injective. Also q I,,(g) is injective since q # g. 
Hence q”g-“” a I,,, is injective. This gives the hypothesis of Lemma 2.3 in this 
case. 

Next suppose M’ g L(d) = L(A) as in Section 5.3, identify M’ with L(d), 
let v be a maximal vector (of L(l) as an sI(2, K’)-module, K’ = K(A)), and 
write v = vq. For all k E N and s = s(q) E K[q] we have 

s(e) . f kv = s(0)fkv + lower terms = (q,s)fkv + lower terms. 

Since cryu = cy C a,(e)(h/2)‘, we have 

u s c ai(e)(h/2)’ mod Us(c - y). 
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Therefore 
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e-94 - f kv = C e-““q(e)(h/2)[ . f kv 

= B t/q(q-“auf) (T - k) ‘fkv + lower terms 
i 

=Q,,, (y- ) k fkv + lower terms (5.4.4) 

by (3.5.2). We have 

PA 24 = c G?)(w + !(A + l))‘, 
vu = vp,u by (3.5.1), and 

Q I7dld~) = c t/q(q-““a,)(r + f(A + 1))’ 

= Q,.& + $(A + 1)) 

by (3.5.2). Therefore, for every k E N, 

Q,,,(f(J - 1) - k) = Qq,pd-1 - k) f 0 

since p,u is preserving relative to q. It follows from (5.4.4) that e-“‘u IwJ is 
injective. Therefore q -“‘a I,,, is injective. Also q-“‘a E A n Bu. 

By Lemma 2.3, A/A n Bu is a simple A-module. The result then follows 
from (5.4.1). Q.E.D. 

The above proof does not really involve pA b and pen b except as a 
notational device in discussing the indicial roots of o,b = a itself. Also if 
<’ - y - 1 has a root in K, then the hypothesis that both pA b and pmAb are 
preserving is used, while if <’ - y - 1 is irreducible then L(J) g t(-A) as Us- 
modules, the roots of Qq,p(lu, are sent into those of Qcl,p(-lu, under the 
automorphism of K’ over K sending 1 to -Iz, and pA b is preserving relative 
to q if and only if P-* b is. 

5.5. We can now state our main result on i&modules. If M is a Us- 
module with c, = y E K and if A = uJJs, then M may be regarded, uniquely, 
as an A-module “M such that (,,M)O(yl = M, and similarly with pA in place of 
oy where I E K and L2 = y + 1. 

THEOREM 5.5. Suppose y E K, and write A = a,Us. Suppose N is u 
simple d-module, 0 2: n E N, and let b be a minimal annihilator of n. Then 



102 RICHARDE. BLOCK 

there is an s, which may be calculated as in Lemma 3.4, such that s E S and 
bs-’ satisfies (54.3); f or any such s, Asn (E (As + 23b)/Z3b) is a simple A- 
module (in particular sn E Sot, N = Asn), and so the pullback of Asn along 
oy is a simple Us-module. If M is any K[e]-torsionfree simple Us-module with 
c, = y, then M arises in this way, and from an N which is unique up to 
isomorphism; that is 

Us-(K[e]-torsionfree, c, = y) + B3 ,̂ Pfl b IS- !4Ml 
is a bijection, with inverse [N] t+ [Sot, N],,,,. If A E K and J2 = y + 1 then 
all the above holds when uY is replaced by pl. 

Proof Pick J E i? such that A2 = y + 1, and set b’ = p16;‘b and b- = 
:-*o;‘b (hence b+, b- E d(K)). By Lemma 3.4 there exists s, E K[q] - (0) 
such that b+s;’ and b-s;’ are both preserving. Pick s E S such that s, 1 s in 
K[q]. It follows from Lemmas 3.3.2 and 3.2 that b+s-’ and b-s-’ are also 
preserving. There exists s2 E S such that s,bs-’ = a E A, with say a = a,~ 
where u E Us. Then p**u = P,lrF;‘a = s2 b*s-’ is preserving, and so 
A/A n Ba = A/A n 80,u is simple by Theorem 5.4. But a is a minimal 
annihilator of sn and so Asn z A/A n Ba is simple. It now follows from 
Lemma 2.2.1 that the map 

A-(S-torsionfree) + de, [M] I--+ [S-W] 

is a bijection. This gives the bijection of the theorem since A*($torsionfree) 
can be identified (via pullback) with Us^(S-torsionfree, cM = y). 

Given the proviso on A, the same proof works when ur is replaced by pl. 
Q.E.D. 

COROLLARY 5.5. The simple Us-modules on which c acts as a scalar 
are, up to isomorphism, the following: the simple K[e]-torsion modules, given 
in Proposition 5.3, and the modules M(u, y), where y E K and u E Us 
satisfies the hypotheses of Theorem 5.4. Two of the latter modules, say 
M(u,, y,), M(u,, y2) (with ul, u2 satisfying the hypotheses of Theorem 5.4) 
are isomorphic tf and only if y1 = y2 and o(y,) u, is similar to a(y2) u2, or 
equivalently-provided ,J E K and A2 = y, + 1 = y2 + 1-p,u, is similar to 

PaU2* 

Proof Only the last sentence remains to be proved. If M(u,, yi) z 
M(u,, y2) then clearly y1 = y2. Write A = u,,Us, and suppose yi = y2 = y. We 
apply Lemma 2.4.2 to AM(~I, y) 2 A/A n 23o,u, (by 5.4. l), getting 
AM(~i, y) g Sot, 8/%o,u,; then cYul and uYu2 are similar if and only if 
%3/9u,u, g B/du,u, if and only if Sot, 8/9u,u, z Sot, 23/23u,u, if and 
only if Jt4(u,, y) g JU(U~, y) if and only if M(u,, y) g M(u,, y). Given the 
proviso on A, the same proof works with pn in place of uY. Q.E.D. 
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6. THE SIMPLE MODULES OVER b 

6.1. In this chapter we apply Sections 4.1, 4.4 to obtain the 
classification of the simple Uh-modules and relate them to simple %-modules 
and Us-modules. Here b is the two-dimensional nonabelian Lie algebra over 
K, a field of characteristic 0. We take a basis h, e of b with [h, e] = 2e, so 
that b is realized as a Bore1 subalgebra of s = eI(2, K). For any y E K, the 
restriction to Ub of the map dY of Section 5.2 can be regarded as a 
homomorphism of Ub to 2l (or to 23). We denote this map by p; thus pe = q 
and ph = 2qp. The set (q’(2qp)’ ] i, j 2 0) being linearly independent, p is 
injective. 

Take R = K[q] and 8 = q(d/dq), and identify A = R [xl8 with K[q, qp] G B 
by identifying x with 4p. Thus pub = A. Also B = S-‘A = 23 since every 
element in 23 is of the form C a(~‘, a, E K(q). The primes P are all principal, 
P = (g) with manic irreducible g E K[q]. The only &invariant prime is (q). 

We now analyze the simple K[e]-torsion Ub-modules, or equivalently, the 
simple S-torsion A-modules. Suppose g E K[q] is manic irreducible. Recall 
that KB = K(a) where a = qsq is a root of g. If g # q then V((g)) = 
A@ KIql K8 is a simple A-module. In order to avoid confusion with the 2l- 
module V(g) = 2l OKtql K N %/2tg (defined using a different a), we shall not I - 
use the notation V(g) for A-modules, but rather (using Corollary 4.1) write 
A@ xIql K, = A/Ag. By pullback along p we obtain a simple Ub-module 
(A/Ag),, which is identitled with Uh/ubg(e). This module may also be iden- 
tified with the space Kb[x] of polynomials over K,, identifying x1 @ w  E 
A@ xIpl Kb with wx’ (o E Kb). Since a’q = q for all i, it follows from (4.1.2) 
that the action of ub on K,[x] is given by 

h . ox’= 2wxi+‘, 

that is, h acts as multiplication by 2x and e acts as 

Q 2 (-1)’ A --& ’ = a exp(-d/k). 
I=0 ( ) 

If q = g then a = 0, K, is identified with K, 8KQ = 0, and K4 [x]a = K[x] 
(commutative). Thus similarity in K,[x]~ is the same as associateness in 
K[x], and the manic irreducible polynomials form a set of representatives of 
the similarity classes. If d E K[x] is manic irreducible, then V((q), [d]), = 
K[x]/(d) with e acting as 0 and h acting as 2.%, where X is the coset of x 
modulo d; that is, M= V((q), [d]), is a finite extension field K(j3) of K with 
eM=O and hy=2/3. 

We now translate Proposition 4.1 to this special case. 
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PROPOSITION 6.1. With the above notation, the U&modules Ub/Ubg(e) 
(g E K[q] manic irreducible, g f q) and K[x]/(d) (d E K[x] manic 
irreducible) are simple (and K[e]-torsion). Conversely, any simple K[e]- 
torsion Ub-module is isomorphic to exactly one of these. 

6.2. With a = q(d/dq), (q) is the unique a-invariant prime of 
R = K[q], K(,, (= K[q]/(q)) = K, and (4.3) becomes 

b = s ajxi, ai E K(q), for all j > 0. 

(6.2.1) 

We note that (6.2.1) is equivalent to each of the following (where the 
product of sets denotes the set of products, not sums of products): 

sb E S(qA + 1) for every s E S such that sb E A; 

b E (K(q) - Pl)(qA + 1). 

(6.2.2) 

(6.2.3) 

Indeed suppose (6.2.1) holds and sb EA. Then aj/a, = qSj/t for all j > 0 
where sj, t E S and q$t. Since sa, E K[q], we have sa, = qk(qab +/3) for 
some k E N, a& E K[q] and 0 # p E K. Then t 1 sj(qab + p) and 

giving (6.2.2). It is immediate that (6.2.2) implies (6.2.3) and (6.2.3) implies 
(6.2.1). By (3.5.2), (6.2.1) is also equivalent to 

Qq.6 E K (6.2.4) 

(where of course Q,,b is defined with respect to 93 = K(q)[pldldq). In turn 
(6.2.4) is equivalent to 

b = 1 bjpj, where bj E K(q) and bj/bo E qj+ ‘K[q](,, for all j > 0. 

(6.2.5) 
We denote by (6.2) the equivalent conditions (6.2.1)-(6.2.5). 
We remark that another proof of the necessity of the condition that every 

minimal annihilator satisfies (6.2) can be given based on the fact that if M is 
a simple A-module (where A = pub), m E A4 and qm # 0 then bqm = -m for 
some bEA, bq=qa for some aEA, and (qa+ l)m=O. 

We now translate Theorem 4.4 to the present case. 

THEOREM 6.2. The K[e]-torsionfree simple modules over Ub (or over 
pub) are given by the statement of Theorem 4.4 with the following changes: 
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A = pub (with R = K[q], x = qp and 8 = q(d/dq) and I? = ‘B (and so (3.1.1) 
holds automuticully)), and (4.3) is replaced by (6.2.5). 

ProoJ The only thing that needs to be noted in this specialization of 
Theorem 4.4 is that it makes no difference whether preserving of bs-’ is 
defined with respect to 8 = K(q)[plvds or 93 = K(q)[qp],,,,,,, which 
follows, in the presence of (6.2) for bs-‘, from Corollary 3.5 and (6.2.4). 

Q.E.D. 

COROLLARY 6.2. Every simple K[e]-torsionfree m-module is isomorphic 
to some (piYb/pub n Bpu), , where pa is irreducible and preserving, and 
a E (eUb + 1). Two of these Ub-modules are isomorphic tf and only tf the 
corresponding two pa are similar. 

6.3. Given a simple B-module N we have SocpUb N E Sac% N. It turns 
out that only the two extremes are possible: equality or SOC,,~ N = 0. 

PROPOSITION 6.3. If M is a simple S-torsionfree %-module, then the 
K[e]-torsionfree Ub-module M, is simple if it contains a simple submodule. 
Moreover every simple K[e]-torsionfree Ub-module arises in this way from a 
unique (up to isomorphism) such M. 

Proof. Write A = pub and M’ = Sot, M. Thus M’ c MG S’M. 
Suppose M’ # 0. Then M’ is simple, qM’ is a submodule of M’ and hence 
qM’ = M’. Therefore qqlM’ c M’ and so PM’ = q-‘qpM c M’, M’ is ?I- 
invariant, and M’ = M. The first statement follows from this. For the second 
statement, if Ml is a simple S-torsionfree A-module, then Ml = 
Sot, S’M, = Sot, S’M,. The argument above shows that the action ofp, 
hence of ‘?I, on Ml is uniquely determined. Q.E.D. 

6.4. We now consider simple Us-modules on which c acts as a 
scalar, and determine which of these contain a simple Ub-submodule. We 
exclude consideration of the highest weight modules, that is, those for which 
e has a null vector, as the situation for these is obvious. 

THEOREM 6.4. Suppose M is a simple e-torsionfree Us-module and 
c, E K. The following conditions are equivalent: 

Sot,, M # 0; (6.4.1) 

Sot,, M = M; (6.4.2) 

3mEM-{O)and3uEUbsuchthut(eu+l)m=O; (6.4.3) 

VmEM-{0},3uEUbsuchthut(eu+l)m-0. (6.4.4) 
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Moreover, for each y E K and simple e-torsionfree LIB-module N, there exists 
a unique (simple) Us-module M with v&f = N and c, = y. 

ProojI Let N be a simple e-torsionfree Ub-submodule. Then eN is Ub- 
invariant (since he = e(h + 2)) and hence eN = N. Given y E K, define 

f(em) = (1/4)(y - h* - 2h)m (m E W; (6.4.5) 

this is well defined since N is e-torsionfree. Then straightforward 
computations, using he = e(h + 2), show that hf(em) -jh(em) = -2f(em) 
and ef(em) -fe(em) = hem. Hence N becomes a Us-module. Clearly c, = y, 
and this condition makes the above action off uniquely determined. This 
proves the theorem’s last statement. Also (6.4.1) implies (6.4.2), since if N is 
a simple Ub-submodule of M and c, = y then (6.4.5) holds and shows that N 
is Us-invariant. If M is K[e]-torsion then, by Proposition 5.3 and 
Lemma 5.3, (6.4.2) holds and M g Us,, g ub @Rlel K, for some manic 
irreducible g E K[q], g # q. Then by (5.3.4) every m E M is annihilated by 
some power of g(e); since powers of g(e) have nonzero constant term, it 
follows that (6.4.4) holds in this case. Hence we may assume that M is K[e]- 
torsionfree. 

Suppose c,,, = y. By Theorem 5.5 , o(Y&t4 is the o,Us-socle of some simple 
B-module M’. Suppose (6.4.1) holds. Since p = cylUb, SocpvbM # 0. Hence, 
by Theorem 6.2 and (6.2.2), for every element m of M’ (and a fortiori for 
every element of O(yu,fi) there is an a E pub such that (qa + 1)m = 0; with 
a =pu, it follows that (6.4.4) holds. Conversely, suppose (6.4.3) holds. Then 
(qa + I)m’=O for some a EpUb and m’ EM’ - {O}. By (3.5.2), 
Q 9,4a + , E K. We may choose a minimal annihilator b of m’ with b E pub. 
Then qa + 1 E db, and, by Lemma 3.3.2, Q,,6 E K. By (3.5.2) again, b has 
the form qk(qd + /3) with k E N, d E pub, 0 # p E K. Thus we may pick b so 
that b has the form qd + 1, d EpUb. By Theorem 6.2, M’ contains an 
essential simple pUb-submodule, which must be contained in SOC,,(~~~~M’. 
Hence (6.4.1) holds. Q.E.D. 

7. EXAMPLES 

7.1. If N is a simple d-module, 0 # n EN and b is a minimal 
annihilator of n then n, pn,..., p ‘-‘n form a basis of N over K(q), where k = 
deg b (that is, the order of the differential operator b). We define the degree 
deg N of N to be the dimension of N over K(q). Thus deg N equals the 
degree of any minimal annihilator. Now suppose A is a subring of B 
containing S = K[q] - (0) and such that 23 = S- ‘A. If M is a simple A- 
module we define the degree deg M of M to be 0 if M is S-torsion and to be 
the degree deg S-‘M of the simple B-module S- ‘M if M is S-torsionfree. 



REPRESENTATIONS OF 51(2) 107 

Suppose 0 # m E M and 0 # a E A is of smallest degree such that am = 0. If 
M is S-torsion then a E S and 0 = deg a = deg M, if M is S-torsionfree then 
a is a minimal annihilator of m as an element of S- ‘M, a is irreducible, and 
deg a = deg M. 

If y E K, the notion of degree may be transferred from 93 to S-‘Us, by 
means of gYy, or equivalently, if I E K and 1’ - 1 = y, by means of DA. Thus 
if M is a simple Us-module and c, = y, we may define deg M as degVC9,,,M 
(= %hl”I MifIEKandI*-l=y). 

We now analyze the degree one modules over the rings 8, ‘2[, and pn Us 
(A E K), assuming for convenience that K is algebraically closed. In the 
degree one case it is easy to describe not only irreducible elements but also 
their similarity classes. Suppose N is a simple B-module of degree one and 
O# n E N. Then there exists t~K(q) such that (p-f)n = 0, the 
isomorphism class [N] corresponds to the similarity class [p - t], and we 
may identify N with K(q) (identifying n with l), where elements of K(q) act 
by multiplication and p acts as t + d/dq. We have K(q)n = N, and changing 
n to 

n n (4 - a# i 
changes t to t + C,j,(q - al)-‘. In particular, it follows that p - t and p - t, 
are similar if and only if t - t, is a logarithmic derivative of an element of 
K(q) - w  (v, 241 contain different proofs of this classical fact). For a E K 
we shall make use of the residue Res, t at a, that is, the coeffkient of 
(q - a)-’ in the partial fraction decomposition of t. Then the above change 
in t adds j, to the residue at a,. Therefore we may choose 0 # n E N so that 

aEK,v,-,t=-l*Res,t&Z 

and, simultaneously, if 1 E K is given, 

v,t=-l+A+Res,t6CZ-(O}. 

(7.1.1) 

(7.1.2) 

THEOREM 7.1. Suppose N is a simple d-module of degree one and 
I E K. Identify N as above with K(q), p acting as t + d/dq, where t E K(q) is 
normalized so that (7.1.1) and (7.1.2) hold. Then 

Sot, N = K[q, (q - al)-’ ,..., (q - a,)-‘], 

where {a, ,..., a,} = {a E K 1 vqmat < 0). Moreover SocpcAjUsN = SocaN 
unless one of 

v,t)O and rz E.Z-, (7.1.3) 

v,t = -1 and Res, t = -A (7.1.4) 
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holds. If (7.1.3) holds then SOC,(~,~, N = q-l Soc,N. Zf (7.1.4) holds (so 
that ai = 0 for some i, say i = I), then 

sot pcAju5N= K[q, (9 -al)-‘,.-., (4 -al-l)-‘]. (7.15) 

Proof: Write K[q, (4 -a,)-‘,..., (9 -a,>-‘] =M,. Pick kE N, 
i E {l,..., 1), and write a = p - t + k(q - a,))‘(=p - t if 1= 0). Then a is 
preserving; it suffices to prove this relative to q -a, where a = aj with 
1 <j< 1. Denoting v,-, by v, we have vt, va< -1. If va < -1 then 
Qp--a,o E K, while if va = -1 then vt = -1 and Q4--n,a = < - Res, t + kd,, 
which has no root in Z- by (7.1.1). Since a . (q - ai)-‘( = 0 and a is 
irreducible and preserving, it follows from Theorem 4.4 that (q - ai)-” E 
Sot, N. Hence, using partial fraction decompositions, we have M1 z Sot, N. 
But also Sot, N = ‘LI . 1 G M,, giving the result for ‘u. 

Next, in order to check (5.4.3), we consider d = pmn&‘a, which equals 
a - Aq-’ by Lemma 5.4.1. Since a is preserving, d is preserving if and only if 
it is preserving relative to q. Write v = v,. If vt > 0 then q # q - ai, Q,,d = 
r- A, and d is preserving unless A E Z-. If vt < 0 then, say, aI = 0; again if 
vt < -1 then Q,,d E K while if vt = -1 then Q,,d = < - Res, t + kJ,, - L, 
and, by (7.1.2), d is preserving unless i = -Res, t and i = 1. Therefore, by 
the same reasoning as for VI, using Theorem 5.5 in place of Theorem 4.4, 

Mt = socpLi)c& N unless either (7.1.3) or (7.1.4) holds. 
Suppose (7.1.3) holds and replace p-t by p-t + kg-‘, which is a 

minimal annihilator of q-l. With b = a + Aq-‘, we have Q,,b = r + I, and so 
b and b - Aq-’ = a are preserving. It follows (as before, but with q-l in 
place of 1) that Socp(A1r,s N = M,qpA in this case. 

Finally, suppose (7.1.4) holds, aI = 0, and let M; denote the right-hand 
side of (7.1.5). We observed above that a and d = a - 13q-’ are both 
preserving in this case unless i= 1, which implies that (q - ai)-” E 
sot p(l)Us N if i # Z, and hence Mi G SOC~(~~~,N. The space M; is clearly 
invariant under pn e and pn h. If ZJ E M; then 

pnf*u=- 
( 
qd+qt+A+ 1 

ds I( ) 
L+t l4 
& 

--~q-‘u-~*q-‘u+(~+l)lq-‘u~o modulo M;. 

Therefore M; is invariant under pn Us so equals SOC,(~,~~ N. Q.E.D. 

7.2. For s = sl(2, C), the subalgebra Ch is a symmetric algebra, and 
the simple Harish-Chandra modules are those for which h has an eigen- 
vector or, equivalently, for which h acts diagonally. These modules are 
included among the degree zero and degree one modules over 5. Indeed at 
degree zero they comprise the highest weight modules (the other degree zero 
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modules being the Whittaker modules, where h has no eigenvector). The 
degree one Harish-Chandra modules are those for which h, but not e, has an 
eigenvector. The condition that p,h has an eigenvector in N (say for eigen- 
value 8) but p,e has no eigenvector is equivalent to 2qp + A + 1 - /? E 
min ann N, that is, p - t E min arm N, where t = (/3 - A - 1)/2q. Thus the 
simple degree one Harish-Chandra modules with c,,, = y comprise the 
modules of Theorem 7.1, pulled back along pA , where we choose a particular 
root ,I of <’ = y + 1, for which t E Cq- ‘. Two such modules (for the same 1) 
are isomorphic if and only if the corresponding t differ by an element of 
zq-1. 
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