22/10 <u>Eq.</u> Equivalences. **S conn.** complex] [compact] reductive algebraic Lie groups 1 groups GL (c) u. $\mathbb{C}^{\times}, \mathbb{C}^{\times} \mathbb{C}^{\times}$ s', (~) Sgroups that ? { Lie Algebras } also "spaces" $GL_{n}(\mathbf{L})$ 1 gl = MM(G) { reductive 2
Lie algebras] Today : S Z reflection
Z group (wo, hz) $f: X \rightarrow Y$ is a morphism of spaces, this gives If df: Tx(X) -> Tf(x) for n eX map between tangent spaces. f (Free) y -Z So, when you have a map between spaces, we also get alla map between tangent spaces. So, G acts on $\mathcal{Y} = T_{r}(G)$ by the Adjoint action $\mathcal{Y} = \text{Lie}(G)$ Adg : $\mathcal{Y} \to \mathcal{O}\mathcal{Y}$ Adg : $\mathcal{O}\mathcal{Y} \to \mathcal{O}\mathcal{Y}$ $\mathcal{A}dg = d(I_{ng})$ $\mathcal{O}\mathcal{G}$. Example G: GLn(C) has Lie algebra oy: qln(C) = { x & Mn(C)} with

exponential map exp: gln -> Ghn -<u>×</u> +→ e[×]_____ where tx → e^{tx} $e^{X} = 1 + X + \frac{X^{2}}{2!} + \frac{X$ How does et acts on G (conjugation action). How does G act on of (Adjoint action) $J_{ng}(e^{tx}) = ge^{tx}g^{-1} = g(1 + tx + tx^{2} + ...)g^{-1}$ = $e^{t(gxg^{-1})}$ So, Adje (x) = gxq⁻¹; i.e. Adje : of - of × m qxq1 Note that : SQn, On, Spn, Un, ... are subgroups of GLn. So, we can work out the action of these groups. <u>Gacts on G by conjegation.</u> <u>Gacts on oy by Adjaint action. (so of is a G-module)</u> Let M be a G-module; M is an vector space and Gacts on M, het $p: G \longrightarrow GL(M) = End(M)$ g $\longrightarrow p(g)$ be the corresponding representation. This gives. $d\rho \longrightarrow gl_n(M) = End(M)$ a representation of Lie algebra. of Abusing notation p"="dp. the one dimensional parameter subgroup $p(e^{tx})$ (by inside GL(M)) So, M is a J-module.

So, I acts on I by adjoint action: adg: of __ of far g G of coming from Ad_{ety} : Of = 2 Of $x \mapsto e^{ty} x e^{ty}$ Clown: ady: Of = 0f $x \mapsto [y, x] = yx - xy$ $2 \quad 1 \quad t_{y} \quad t_{y} \quad (x + t_{y})$ Because : Ad ety (n) = $e^{t_y} = e^{t_y} = (1 + t_y + t_y^2 + ...) = (1 - t_y + t_y^2 + ...)$ = $x + t(yx - xy) + t^{2}(y^{2}x + 2yxy + xy^{2}) + ...$ = Id(x) + t ady (x) + t (ady)(x) + Since, $(ad_y)^2(x) \pm ad_y([y,x]) = [y, [y,x]] = [y, yx - xy]$ = y (yn - xy) - (yn - xy)y <u>- y²x + 2yxy + xy²</u> So, Adety (x) = etady (x) Summary Gacts on G by conjugation Ing: G->G: # -> gkg⁻¹ Gacts on of by Adjoint action Adg : 04 -> 04 : 2 -> 929" of acts on of by adjoint action ady: of any for geg $: \times \longrightarrow [y, \infty]$ Let M be a g G-module . (M is also a of -module) The dual to M is $M^* = Hom(M, C) = \{ \varphi : M \rightarrow C \mid \varphi \text{ is linear}$ with G action and g- action $(y\hat{\varphi})(m) = \hat{\varphi}(g'(m))$ for $g\in G$ $m\in M$. $(x \varphi)(m) = \varphi(-xm)$ for $x \in \mathcal{Y}$, $m \in \mathcal{M}$ Since $(e^{xt})^{-1} = e^{tx} = e^{t(-x)}$

we get So acts on 97 by coadjoint action acts on 97 by coAdjoint action oj G Tori and Cartom Subgroup algebras. Let G be an algebraic group A torus is G is a subgroup H isomorphic of to C* x ... x C* . = GL, x ... * GL, Let K be a compact Lie group. A torus in K is a subgroup T isomorphic to S'x ... x 8' = U, x ... x U, Let 7 be a Lie algebra. A abelian subalgebra is a subalgebra h such that $[h_1, h_2] = 0$ for $h_1, h_2 \in h_1$ (if $h \in gl_n$ then $O = [h_1, h_2] = h_1 h_2 - h_2 h_1$ means h_1 and ha commute) A Cartom subalgebra is a maximal abelian subalgebra Examples: A maximal torus in GLn is $H = \begin{cases} \begin{pmatrix} x_1 & 0 \\ 0 & x_n \end{pmatrix} \\ \end{pmatrix} \\ \begin{array}{c} \chi_1 & \chi_2 \\ \chi_2 \\ \chi_1 \\ \chi_2 \\ \chi_2 \\ \chi_2 \\ \chi_1 \\ \chi_2 \\ \chi$ if we want to get the other we can just conjugate it (Sylow's Hm) A Cartan subalgebra of glm is h = Lie(H) $h = \frac{1}{2} \begin{pmatrix} h_{i} & a_{i} \\ a^{*} & h_{i} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} h_{i} & a_{i} \\ a^{*} & h_{i} \end{pmatrix} = \begin{pmatrix} h_{i} & a_{i} \\ a^{*} & a_{i} \end{pmatrix} = \begin{pmatrix} h_{i} & h_{i} \\ a^{*} & a_{i} \end{pmatrix} = \begin{pmatrix} h_{i} & h_{i} \\ a^{*} & a_{i} \end{pmatrix} = \begin{pmatrix} h_{i} & h_{i} \\ a^{*} & a_{i} \end{pmatrix} = \begin{pmatrix} h_{i} & h_{i} \\ a^{*} & a_{i} \end{pmatrix} = \begin{pmatrix} h_{i} & h_{i} \\ a^{*} & h_{i} \end{pmatrix} = \begin{pmatrix} h_{i}$ The only way we know to get information about ' is via H. G Irreducible representations of H (All irreducible representations of a commutative algebra) ave l-dimensional (over C)

(equiv to Jordan Normal Form) The irreducible (rational) representations of H are $X^{M} = X^{M_{1} \epsilon_{1} + \dots + M_{n} \epsilon_{n}} = X^{M_{1} \epsilon_{1}} \cdots X^{M_{n} \epsilon_{n}} = (X^{\epsilon_{1}})^{M_{1}} \cdots (X^{\epsilon_{n}})^{M_{M}}$ where Mi E Z $\frac{\text{shere}}{X^{\epsilon_i}} \xrightarrow{\text{M}} \mathbb{C}^* : GL_1(\epsilon_i) \xrightarrow{X^{\epsilon_i}} H \longrightarrow \mathbb{C}^*$ The reducible representations of h are $M = G \longrightarrow C = gl,$ $\begin{pmatrix} h_i & o \\ & & \end{pmatrix} \longrightarrow M_i h_i + \dots + M_m h_m$ so that $\mu = \mu, \epsilon, + \ldots + \mu_n \epsilon_n$ with $\epsilon_i : h \longrightarrow C$ (h. o) , hi So $h^* \ge \frac{1}{2} \lim_{n \to \infty} \max_{m \ge n} : h \longrightarrow \mathbb{C}^2$ is the set of irred reps of h. Toward Weyl groups Let M be a G-module. HEG so H acts on M. i.e. M is an H-module (and an h-module). Let neh* (an irreducible representation of h). The M-meight space of M is: $M_{\mu} = \{ m \in \mathcal{M} \mid \text{for each teH}, t : m = X^{\mathcal{M}}(t) m \}$ = { m e M | for each heh, hom = m(h) m ? He de de mase eigenvectors of H& h. i.e. The.

The generalised u-weight space of M is M^{gen} = { m e M | for each teH, (t-X(t))^m=0] for some l 6 Zzo = { m e M | for each (h-m(h)) l m = o for ? some l e Z,o Basically we add in Jordan normal form as well. $\left(\begin{pmatrix} m & i & a \\ \vdots & i \\ c & m \end{pmatrix} - \begin{pmatrix} m & a \\ a & m \end{pmatrix} \right) \begin{pmatrix} m & a \\ a & m \end{pmatrix} = 0$ $M_{\mu}^{\text{gen}} \neq \sigma \implies M_{\mu} \neq \sigma \qquad M = \bigoplus M_{\mu}^{\text{gen}}$ $M = \bigoplus M_{\mu}^{\text{gen}}$ $M = \bigoplus M_{\mu}^{\text{gen}}$ (Jordan normal form) A weight of M is u such that that My #0 We will try to understand My understanding its weight. Question. What are the weights of the adjoint representations. The roots (or root system) of of our the non-zero weights The Weyl group of G is Wo = N(H)/ where N(H) = SneG | nHn'=H] 2H N is the stabilizer of the maximal abelian subgroup. H.

(the "interesting part" is N(1+)) Wo acts on H by nhat = h for n E N(H) h EH => Wo acts on h => Wo acts on h If M is a G-module, then N(H) acts on M and $\omega: M_{\mu} \longrightarrow M_{w_{\mu}}, \qquad w \in W_{o} \qquad (i)$ M . () Mgen met * (2) (1', & (2) and tools for study representations. Sc, if we understand (1) & (2) we know Aleverything about M.