REPRESENTATION THEORY

EMILY PETERS

ABSTRACT. Notes from Arun Ram’s 2008 course at the University
of Melbourne.

1. WEEK 1
2. WEEK 2
Theorem 2.1 (Artin-Wedderburn). (Almost) every algebra A is semisim-

ple, A =@, ;Ma, (C)

Counter-example. Last week we has the counter-example that
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is not semisimple.

However, there is a problem: this is not an algebra (no identity). We
can try to fix this:
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is not semisimple, but the proof is different from the proof we used last

week.

2.1. Remark about generators and relations.
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Definition. The general Temperley-Lieb algebra T'Ly is:

T L) = span {

with the product

noncrossing (planar) diagrams with
k top dots and k bottom dots

blbg — (q + q—l)# of internal loops(b1 on tOp of bg)

(ie, blob= (¢ + ¢71) = [2].)
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These have dimensions 1,2,5,14, ..

’

.which are the Catalan numbers.
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Definition. Let ¢; = . ..

Theorem 2.2. T'L; is presented by generators e;,...,ex_1 and rela-
tions
6? = (q + q_l)ei and €;€i+1€; = €;

Remark. It’s not possible to define an algebra except by generators
and relations. Whenever we want to show that an algebra, defined in
terms of generators A and relations A, is presented by generators B
and relations B, what we really need to do is show:

(1) generators A can be written in terms of generators B
(2) relations A can be derived from relations B
(3) generators B can be written in terms of generators A
(4) relations B can be derived from relations A

Proof. In the definition of Temperley-Lieb, let generators A be {noncrossing
(planar) diagrams with k top dots and k bottom dots}, and relations A

be {b1by = (q+q~1)# ofinternalloops(, on top of by)}. Now let generators

B be {e;}, and relations B be {e? = (¢ + ¢ ')e; and e;jeir1e; = e;}.

(3) and (4) are easy in this case; (1) and (2) are the hard parts. O

2.2. Traces.

Definition. Let A be an algebra. A trace on A is a linear transforma-
tion t : A — C such that

t(araz) = t(agay) for aj,ay € A.
Define (,) : A® A — C by

(ay,a9) = t(arag) for aj,ay € A.

Note:
(ay,a3) = (as,a;) and  (ajag,a3) = (a1, azas) .
Definition. The radical of (,) is
Rad((,)) = {r € Al (r,a) =0 for all a € A}

Homework. Rad((,)) is an ideal of A (ie if r € Rad((,)) and a € A
then ra, ar € Rad((,)).
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Definition. The trace t of the form (,) is nondegenerate if
Rad((,)) = 0.

Definition. Let B be a basis of A, B = {by,...,b,}. The dual basis
to B with respect to (,) is B* = {bj,..., b5} such that

<b2‘, b;> — 6i,j-
Definition. The Gram matriz of (,) is
G = (<b27 bj))bi,bjGB-

Homework. The dual basis exists iff the Gram matrix is invertible iff
det(G) is inveritble in C iff Rad((,)) = 0.

Let A be an algebra with a nondegenerate trace t. Let B be your basis
of A.

Example. Let A =T 1Ls,

/ / / /
N N N N
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2.3. Commuting operators. Again: Let A be an algebra with a
nondegenerate trace t. Let B be your basis of A. Let B* be the
dual basis. Let M, N be A-modules. Recall

pm A — End(M) and py : A — End(N)
a — apy a — an

Then

- _ ¢ is a morphism of vector spaces and
Hom (M, N) = {¢ M= N ¢(am) = ap(m), fora € A,m e M

={¢ € Hom(M,N)|pay = and}
Definition. The A-endomorphisms of M are
Ends(M) := {¢ € End(M)|par = ap¢ for a € A}
where End (M) = Hom (M, M). Or we might just write
End,(M) = {¢ € End(M)|pa = a¢p for a € A}

Now, let ¢ : M — N be a vector space homomorophism. Define

[¢] : M — N by
(6] = bob".

beB
(and check that if m € M, [¢p]m = >, bpb*m € N).

Claim. [¢] € Hom(M, N).

Proof. Let a € A,m e M.
alplm = Z abpb™m = Z Z (ab, c*) cpb™m

beB beB ceB

= Z co (ab, c*) b*m = Z cp (c*a,b)b*m = Z copctam
b,ceB b,ceB ceEB

= [gom.

Homework. Show that [¢] does not depend on the choice of B.

Game. You give me ¢ : M — N and I make [¢] € Homa(M, N).

Detour: Schur’s lemma. Suppose [¢] € Hom4 (M, N) and suppose
M and N are simple. Then ker [¢] and im[¢] are submodules of M
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and N respectively. So ker [¢] = 0 or ker [¢] = M and im[¢] = 0 or
im[¢] = N. So either [¢] is zero, or [¢] is injective and surjective, ie
an isomorphism. If M ~ N then [¢] € Enda(M). Since C is an alge-
braically closed field [¢] has an eigenvalue X\. Then [¢] — A € End4(M).
So [¢] — A = 0 or [¢] — A is an isomorphism. Since det([¢] — \) =
0,[¢] — A =0, ie [¢] = A. We've just proved

Theorem 2.3 (Schur’s Lemma). Suppose [¢] € Homa(M, N) and sup-
pose M and N are simple. Then either [¢] = 0 or [¢p] = X\ for some \.
In particular, if M is simple, then

EndA(M) =C.

Definition. Let A be an algebra. Let M be an A-module. The com-
mutant or centralizer algebra of M is Ends(M).

General question: How are A and Ends(M) related?

2.4. Regular representation.

Definition. Let A be an algebra. The reqular representation of A is
A with A-action given by left multiplication. Then

pa:A— End(A)
av aa

is injective, since a - 1 = a implies ker p4 = 0.

Therefore, elements of A “are” matrices. (You may have thought that
Temperley-Lieb was diagrams, but it turns out it’s nothing more than
a bunch of 5-by-5 matrices.)

Let t : A — C be the trace of the reqular representation
t(a) :==Tr(aa)

Theorem 2.4. (Maschke’s theorem) Let A be an algebra such that the
trace of the regular representation is nondegenerate (note that finite
dimensionality has already entered here — infinite matrices might not
have traces). Then every A-module M is completely decomposable, ie

M=A A" D-..

where AN, A", ... are simple modules.
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Proof. Let M be an A-module. If M is simple, we're done.

Otherwise let N be a submodule of M. N has basis {ny,...,n,} and
M has basis {ni,...,n.,my,...,mg}.

Define a map ¢ : M — M by ¢(n;) = n; and ¢(m;) = 0. Then
é(n) =n forn € N and ¢* = ¢, im¢ = N, so ¢ is projection onto N.
And [¢p] € Homa(M, M).

If n € N then

[@n = beb'n =Y bb*n =n,

beB beB
because

Claim. ), _,bb* =1

Proof. Let a € Aand consider (3,5 bb*,a) = >, p (ab,b*) =3, abl, =

Tr(as) =(1,a). m
Next if m € M,
= (6] > bob'm =Y coc'bpbm
beB beeB
= > cbgb'm = bpb'm =
be,eB beB
0, [0 = [¢] and (1 = [¢])2 = --- =1 —[¢p] and M = 1-M =
([ ] +1-— [ WM = [p|M + (1 — [qb])M Now [¢]|M is a submodule and
(1 —[¢])M is a submodule, and [¢p]M N (1 — [¢])M =0, so M is split.

By induction, we’re done. 0



