Week 10 Problem Sheet Group Theory and Linear algebra Semester II 2011

Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville, VIC 3010 Australia aram@unimelb.edu.au

Last updates: 1 September 2011

(1) Week 10: Vocabulary(2) Week 10: Results(3) Week 10: Examples and computations

1. Week 10: Vocabulary

- (1) Define \mathbb{R}^2 and \mathbb{E}^2 and give some illustrative examples.
- (2) Define isometry of \mathbb{E}^2 and give some illustrative examples.
- (3) Define a rotation of \mathbb{E}^2 and give some illustrative examples.
- (4) Define a reflection of \mathbb{E}^2 and give some illustrative examples.
- (5) Define a translation of \mathbb{E}^2 and give some illustrative examples.
- (6) Define glide reflection of \mathbb{E}^2 and give some illustrative examples.
- (7) Define \mathbb{R}^n and \mathbb{E}^n and give some illustrative examples.
- (8) Define isometry of \mathbb{E}^n and give some illustrative examples.
- (9) Define a rotation of \mathbb{E}^n and give some illustrative examples.
- (10) Define a reflection of \mathbb{E}^n and give some illustrative examples.
- (11) Define a translation of \mathbb{E}^n and give some illustrative examples.
- (12) Define the groups $O_n(\mathbb{R})$ and $SO_n(\mathbb{R})$ and give some illustrative examples.
- (13) Define a rotation in \mathbb{R}^2 and give some illustrative examples.
- (14) Define a rotation in \mathbb{R}^3 and give some illustrative examples.

2. Week 10: Results

- (1) Show that if an isometry fixes two points then it fixes all points of the line on which they lie.
- (2) Show that if an isometry fixes three points which do not all lie on a line then it fixes all of \mathbb{E}^2 .
- (3) Let σ_1 and σ_2 be reflections in axes L_1 and L_2 . Show that

(a) If L_1 and L_2 intersect then the product $\sigma_1 \sigma_2$ is a rotation about the point of intersection of L_1 and L_2 with an angle of rotation twice the angle between L_1 and L_2 , and

(b) If L_1 and L_2 are parallel then the product $\sigma_1 \sigma_2$ is a translation in a direction perpendicular to L_i with a magnitude equal to twice the distance between L_1 and L_2 .

- (4) Show that the product of three reflections in parallel axes is a reflection.
- (5) Show that the product of three reflections in axes which are not parallel and which do not intersect in a point is a glide reflection.
- (6) Show that the set of fixed points of an isometry is one of the following:
 - (1) All of \mathbb{E}^2 , in which case the isometry is the identity;
 - (2) A line in \mathbb{E}^2 , in which case the isometry is the reflection in that line;
 - (3) A single point, in which case the isometry is a rotation about that point and can be expressed as the product of two reflections;

```
(4) empty, in which case the isometry is either (a) a translation and can be expressed as the product of two reflections or (b) a glide reflection and can be expressed as the product of three reflections.
```

- (7) Let \mathcal{G} be the group of isometries of \mathbb{E}^2 . Show that the set of translations forms a normal subgroup of \mathcal{G} .
- (8) Let \mathcal{G} be the group of isometries of \mathbb{E}^2 . Let *P* be a point of \mathbb{E}^2 . Show that the set of isometries of \mathbb{E}^2 which fix *P* is a subgroup of \mathcal{G} .
- ⁽⁹⁾ Let \mathcal{I} be the group of isometries of \mathbb{E}^2 . Let P and Q be points of \mathbb{E}^2 . Let \mathcal{O}_P be the set of isometries that fix P and let \mathcal{O}_Q be the sets of isometries that fix Q. Show that \mathcal{O}_P and \mathcal{O}_Q are conjugate subgroups of \mathcal{I} .
- (10) Let \mathcal{G} be the group of isometries of \mathbb{E}^2 . Let *P* be a point of \mathbb{E}^2 . Show that every element of \mathcal{G} can be uniquely expressed as a product of a translation and an isometry fixing *P*.

- (11) Let \mathcal{G} be the group of isometries of \mathbb{E}^2 . Let P be a point of \mathbb{E}^2 . Let \mathcal{O}_P be the set of isometries that fix P. Show that there is a surjective homomorphism $\pi_P: \mathcal{G} \to \mathcal{O}_P$.
- (12) Show that a finite group of isometries of \mathbb{E}^2 is a cyclic group or a dihedral group.
- (13) Let f be an isometry of \mathbb{E}^n such that f(0) = 0. Show that there exists an orthogonal matrix $A \in O_n(\mathbb{R})$ such that f(x) = Ax, for $x \in \mathbb{E}^n$.
- (14) Show that if $f:\mathbb{E}^n \to \mathbb{E}^n$ then there exist $A \in O_n(\mathbb{R})$ and $b \in \mathbb{R}^n$ such that f(x) = Ax + b.

3. Week 10: Examples and computations

- (1) Describe the rotational symmetries of a cube. There are 24 in all. Are there any other symmetries besides these rotations?
- (2) Describe the 12 rotational symmetries of a regular tetrahedron.
- (3) Find two "different" multiplication tables for groups with 4 elements. Show that both can be represented as symmetry groups of geometric figures in \mathbb{R}^2 .
- (4) Let $A \in O_n(\mathbb{R})$. Show that the linear transformation $f: \mathbb{R}^n \to \mathbb{R}^n$ defined by f(x) = Ax is an isometry.
- (5) Let $b \in \mathbb{R}^n$. Show that the function $t_b : \mathbb{R}^n \to \mathbb{R}^n$ given by $t_b(x) = x + b$ is an isometry. Show that the inverse of t_b is t_{-b} .
- (6) Show that compositions of isometries are isometries.
- (7) Define a "reflection in a line" in \mathbb{E}^2 and show that it is an isometry.
- (8) Define a "rotation about a point" in \mathbb{E}^2 and show that it is an isometry.
- (9) Define a "translation" in \mathbb{E}^2 and show that it is an isometry.
- (10) Define a "glide relfection" in \mathbb{E}^2 and show that it is an isometry.
- (11) Let \mathcal{G} be the group of isometries of \mathbb{E}^2 . Let \mathcal{G}_+ denote the subset of \mathcal{G} consisting of all translations together with all rotations. Show that \mathcal{G}_+ is a subgroup of \mathcal{G} .
- (12) Let \mathcal{G} be the group of isometries of \mathbb{E}^2 . Let \mathcal{G}_+ denote the subset of \mathcal{G} consisting of all translations together with all rotations. Show that \mathcal{G}_+ is a subgroup of index 2 in \mathcal{G} and that \mathcal{G}_+ is a normal subgroup of \mathcal{G} .
- (13) Let \mathcal{G} be the group of isometries of \mathbb{E}^2 . Let \mathcal{G}_+ denote the subset of \mathcal{G} consisting of all translations together with all rotations. Show that $f \in \mathcal{G}_+$ if and only if f is a product of

an even number of reflections.

- (14) Identify \mathbb{E}^2 with the complex plane so that each point of \mathbb{E}^2 can be represented by a complex number. Show that every isometry can be represented in the form $z \mapsto e^{i\theta}z + u$ or of the form $z \mapsto e^{i\theta}\overline{z} + u$, for some real number θ and some complex number u. Show that the former type correspond to orientation preserving isometries.
- (15) Let \mathcal{G} be the group of isometries of \mathbb{E}^2 . Describe the conjugacy classes in the group \mathcal{G} .
- (16) Show that if f and g are isometries of \mathbb{E}^n then so is $f \circ g$.
- (17) Let (A, b) denote the isometry of \mathbb{E}^n given by $x \mapsto Ax + b$ for $A \in O(n), b \in \mathbb{R}^n$.

(a) Show that the function π : isom $(\mathbb{E}^n) \to O(n)$ given by $\pi((A, b)) = A$ is a homomorphism.

(b) Find the kernel and image of π .

(c) Deduce that the set T of all translations is a normal subgroup of $isom(\mathbb{E}^n)$ with $isom(\mathbb{E}^n)/T$ isomorphic to O(n).

- (18) Show that the subset isom₊(\mathbb{E}^n) of orientation preserving isometries of \mathbb{E}^n is a normal subgroup of index 2 in isom(\mathbb{E}^n).
- (19) Write each of the following isometries of \mathbb{E}^2 in the form (A, b), where $A \in O(2)$ and $b \in \mathbb{R}^2$.
 - (i) f is the anticlockwise rotation through $\pi/2$ about the point (0, 0).
 - (ii) g is the anticlockwise rotation through π about the point (1,0).
 - (iii) *h* is the reflection in the line x + y + 2 = 0.
 - (iv) $f \circ g$ and $g \circ f$.
- (20) Let f and g be the isometries of E² given by: f is the anticlockwise rotation through π / 2 about the point (0,0) and g is the anticlockwise rotation through π about the point (1,0). Show that f ∘ g and g ∘ f are rotations and find the fixed point and the angle of rotation for each of them.
- (21) Let R_1 and R_2 be reflections in the lines y = 0 and y = a, respectively. Find formulas for R_1 and R_2 and verify that $R_1 \circ R_2$ and $R_2 \circ R_1$ are translations.
- (22) Let f be an orientation reversing isometry of \mathbb{E}^2 . Show that f^2 is a translation.
- (23) Let $\operatorname{Fix}(h) = \{x \mid h(x) = x\}$. Show that if $f: \mathbb{E}^2 \to \mathbb{E}^2$ and $g: \mathbb{E}^2 \to \mathbb{E}^2$ are isometries then $\operatorname{Fix}(gfg^{-1}) = g\operatorname{Fix}(f)$.

- (24) Let $f: \mathbb{E}^2 \to \mathbb{E}^2$ and $g: \mathbb{E}^2 \to \mathbb{E}^2$ be isometries. Show that if f is the reflection in a line L then gfg^{-1} is reflection in the line g(L).
- (25) Let $f: \mathbb{E}^2 \to \mathbb{E}^2$ and $g: \mathbb{E}^2 \to \mathbb{E}^2$ be isometries. Show that if f is a rotation by θ about p then gfg^{-1} is a rotation about g(p) by θ if g preserves orientation and by $-\theta$ if g reverses orientation.
- (26) Let $f: \mathbb{E}^2 \to \mathbb{E}^2$ and $g: \mathbb{E}^2 \to \mathbb{E}^2$ be isometries. Show that if f is a translation then gf g^{-1} is a translation by the same distance.
- (27) Let D_{∞} be the set of isometries of \mathbb{E}^2 consisting of all translations by (n, 0) and all reflections in the lines x = n/2, where $n \in \mathbb{Z}$. Show that D_{∞} is a subgroup of isom (\mathbb{E}^2) .
- (28) Let D_{∞} be the set of isometries of \mathbb{E}^2 consisting of all translations by (n, 0) and all reflections in the lines x = n/2, where $n \in \mathbb{Z}$. Show that D_{∞} acts on the *x*-axis and find the orbit and stabilizer of each of the points $(1, 0), (\frac{1}{2}, 0), (\frac{1}{3}, 0)$.
- (29) Let D_{∞} be the set of isometries of \mathbb{E}^2 consisting of all translations by (n, 0) and all reflections in the lines x = n/2, where $n \in \mathbb{Z}$. Show that D_{∞} is generated by $a:(x, y) \mapsto (x + 1, y)$ and $b:(x, y) \mapsto (-x, y)$ and that these satisfy the relations $b^2 = 1$ and $bab^{-1} = a^{-1}$.
- (30) Show that every orientation preserving isometry of \mathbb{E}^3 is either: (i) a rotation about an axis, (ii) a translation, of (iii) a screw motion consisting of a rotation about an axis composed with a translation parallel to that axis.
- (31) Show that a rotation fixing the origin on \mathbb{R}^3 has an eigenvalue 1. Show that the corresponding eigenspace is of dimension 1, the axis of rotation.
- (32) Show that a rotation fixing the origin on \mathbb{R}^2 has two eigenvalues 1 and -1. Show that the eigenspace corresponding to 1 is the line of reflection and that the eigenspace corresponding to -1 is the perpendicular to the line of reflection.
- (33) Let f be a rotation on \mathbb{R}^3 . Then the plane perpendicular to the axis of rotation is an invariant subspace of f. Show that the matrix for the rotation with respect to a basis of two orthonormal vectors from the plane and a unit vector along the axis of rotation is

$$\begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

- (34) Let f be a reflection, in a line through the origin, in \mathbb{R}^2 . Show that the minimal polynomial of f is $x^2 1$.
- (35) Define a 4-dimensional cube and work out some of its rotational symmetries.

- (36) What letters in the Roman alphabet display symmetry?
- (37) Show that the set of all rotations of the plane about a fixed centre P, together with the operation of composition of symmetries, form a group. What about all of the reflections for which the axis (or mirror) passes through P?
- (38) Describe the product of a rotation of the plane with a translation. Describe the product of two (planar) rotations about different axes.
- (39) Find the order of a reflection.
- (40) Find the order of a translation in the group of symmetries of a plane pattern.
- (41) Can you find an example of two symmetries of finite order where the product is of infinite order?
- (42) Let G be the group of symmetries of a plane tesselation. Decide whether the set of rotations in G is a subgroup.

4. References

[GH] J.R.J. Groves and C.D. Hodgson, Notes for 620-297: Group Theory and Linear Algebra, 2009.

[Ra] A. Ram, Notes in abstract algebra, University of Wisconsin, Madison 1994.