Real Analysis

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 8 July 2014

Lecture 9

Limit examples

Prove that limx0ex-1x=1.

Proof.

limx0 |ex-1x-1| = limx0 |ex-1-xx| = limx0 1+x+ x22!+ x33!+ -1-x x = limx0 x2!+ x23!+ x34!+ = limx0|x| 12!+ x3!+ x24!+ limx0|x| ( 12!+ x3!+ x24!+ ) limx0|x| (1+|x|+|x|2+) = limx0|x| 11-|x|=0 ·1=0. So limx0 ex-1x=1.

Evaluate limx0cosx-1x2. limx0 cosx-1 x2 = limx0 (eix+e-ix2-1) x2 = limx012 (eix+e-ix-2x2) = limx012 e-ix (e2ix-2eix+1)x2 = limx0-12 e-ix (eix-1)2 (ix)2 = -12·e0·12 = -12.

Find limx23x2+8x2-x. limx2 3x2+8x2-x = ( limx2 3x2+8 ) ( limx2 1x2-x ) = (3·22+8) 122-2 = (3·4+8)12 = 202 = 10, since limx23x2+8 and limx21x2-x exist (because f(x)=3x2+8 and f(x)=1x2-x are continuous at x=2 – the graph doesn't jump at x=2).

Find limx05xx. limx05xx= (limx05x) (limx01x) NO. We can only do this if limx05x exists and limx01x exists. A more sensible approach is to use some algebra, limx05xx=limx051=5.

Evaluate limx01+x-1x. limx0 = limx0 (1+x-1)x (1+x+1) (1+x+1) = limx0 1+x-1 (1+x+1) = limx0 11+x+1 = 11+0+1 = 12.

Evaluate limx0sinxx. limx0 sinxx = limx0 eix-e-ix 2ix = limx0 eix-1ix- e-ix-1ix 2 = limx012 ( eix-1ix+ e-ix-1-ix ) = 12(1+1)=1.

limx0log(1+x)x

Let x=ey-1. Then y=log(x+1) and y0 as x0. So limx0 log(1+x)x = limy0 log(1+ey-1) ey-1 = limy0 log(ey) ey-1 = limy0 yey-1 = limy0 1ey-1y = 11=1.

Evaluate limn(1+34n)n. limn (1+34n)n = limn elog(1+34n)n = limn enlog(1+34n) = limn e34·log(1+34n)34/n = e34·1=e34.

Let an and bn be sequences in . Assume that limnan exists and limnbn exists. If anbn then limnanlimnbn.

Proof.

Proof by contradiction.

Let 1=limnan and 2=limnbn.
Assume 1>2. Let ε=1-2.
Let N1>0 be such that if n>0 and n>N1 then |an-1|<ε/2. Let N2>0 be such that if n>0 and n>N2 then |bn-1|<ε/2. Let N>0 be such that N>N1 and N>N2.
Then aN>1-ε/2= 2+ε-ε/2= 2+ε/2>bN. This is a contradiction to aNbN.
So limnanlimnbn.

Assume that limxag(x)= and limyf(y) exists. Then limyf(y)= limxaf(g(x)).

Proof.

Let L=limyf(y).
To show: limxaf(g(x))=L.
To show: If ε>0 then there exists δ>0 such that if |x-a|<δ then |f(g(x))-L|<ε. Assume ε>0.
To show: There exists δ>0 such that if |x-a|<δ then |f(g(x))0L|<ε. Let δ1>0 be such that if |y-|<δ1 then |f(y)-L|<ε. Let δ>0 be such that if |x-a|<δ then |g(x)-|<δ1. So if |x-a|<δ then |g(x)-|< δ1and |f(g(x))-L| <ε.

Notes and References

These are notes from a 2010 course on Real Analysis 620-295. This page comes from 100319suggLect9.pdf and was given on 19 March 2010.

page history