Real Analysis

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 19 July 2014

Lecture 25

A metric space is a set X with a function d:X×X0 such that

(a) if pX then d(p,p)=0,
(b) if p,qX then d(p,q)0,
(c) if p,qX then d(p,q)=d(q,p),
(d) if p,q,rX then d(p,r)d(p,q)+d(q,r).

The point of this lecture is to show:

If X is n and d:n×n 0is given by d(x,y)=|y-x| then the triangle inequality holds: |x+y||x| +|y|. or, if x=p-q and y=q-r then |p-r|= |p-q+q-r|< |p-q|+ |q-r| so that d(p,r) d(p,q)+ d(q,r) and (d) holds.

n will be our favourite example of a metric space.

The triangle and Schwartz inequalities

The inner product on n is the function n×n (x,y) x,y given by x,y= (x1,,xn) (y1yn) =x1y1++xnyn =i=1nxiyi.

The absolute value on n is the function n 0 x |x| given by|x|= x12++xn2 =x,x. Pictorially, |x| is the distance from x=(x1,,xn) to the origin (2,1,3) x y z 3 = {(x,y,z)|x,y,z}and n = { (x1,,xn) |x1,x2, ,xn } , 1 = {x|x}= 2 = { (a,b)| a,b } can be identified with = {a+bi|a,b}.

Lagrange's identity

If x=(x1,,xn)n and y=(y1,y2,,yn)n then (i=1nxi2) (i=1nyi2)- (i=1nxiyi)2 =12i,j (xiyj-xjyi)2.

Proof.

12i,j=1n (xiyj-xjyi)2 = 12i,j=1n xi2yj2-2xi yjxjyi+ xj2yi2 = 12 i,j=1n xi2yj2+ 12 i,j=1n xj2yi2- j,i=1n xiyixjyj = i,j=1n xi2yj2- (i=1nxiyi)2 = (i=1nxi2) (j=1nyj2)- (i=1nxiyi)2.

If n=2, 12 ( (x1y1-x1y1)2+ (x1y2-x2y1)2+ (x2y1-x1y2)2+ (x2y2-x2y2)2 ) . = = (x12+x22) (y12+y22)- (x1y1+x2y2)2.

(The Schwartz inequality) If x,yn then x,y |x||y|.

Proof.

Lagrange's identity tells us |x|2|y|2 -x,y20. So (|x||y|)2 x,y2. So |x||y| x,y.

(The triangle inequality) Let x,yn. Then |x+y||x|+ |y|.

Proof.

x+y,x+y = x,x+ x,y+ y,x+ y,y = |x|2+ 2x,y+ |y|2 |x|2+ 2|x||y|+ |y|2 = (|x|+|y|)2. So |x+y|2 (|x|+|y|)2. So |x+y| |x|+|y|.

Note that Lagrange's identity works with replaced by any field, and the Schwartz and triangle inequalities are valid with replaced by any ordered field.

Notes and References

These are notes from a 2010 course on Real Analysis 620-295. This page comes from 100507Lect25.pdf and was given on 7 May 2010.

page history