Real Analysis

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 13 July 2014

Lecture 20

The fundamental theorem of calculus

Write f(x)dx= A(x)+cif ddxA(x)=f(x) . The fundamental theorem of calculus says Area underf(x)from atob=A(b)- A(a) abf(x)dx means limΔx0 ( f(a)Δx+ f(a+Δx)Δx++ f(b-Δx)Δx ) = limΔx0 ( sum of the areas of the little boxes } Δx f(a+Δx) ) a b First box has area f(a)Δx. Second box has area f(a+Δx)Δx, .

Why is the fundamental theorem of calculus true? Area underf(x)from atob=A(b) -A(a) where f(x)dx=A(x)+c.

Idea of proof

To show: There exists A:[a,b] such that

(a) If c[a,b] then A(c)=f(c)
(b) A(b)-A(a)= Area under f(x) from a to b.
Let A(x)=area underf(x) fromatox y=f(x) a x b x y A(x) To show:
(a) If c[a,b] then A(c)=f(c)
(b) A(b)-A(a)= Area under f(x) from a to b.

(a) Assume c[a,b].
To show: A(c)=f(c). A(c) = limΔx0 A(c+Δx)-A(c) Δx = limΔx0 (area underf(x)fromatoc+Δx)- (area underf(x)fromatoc) Δx = limΔx0 (area of little boxwith heightf(c)) Δx = limΔx0 (f(c)Δx) Δx = limΔx0 f(c)=f(c).

(b) To show: A(b)-A(a)= area under f(x) from a to b. A(b)-A(a) = (area underf(x)fromatob)- (area underf(x)fromatoa) = (area underf(x)fromatob)

02exdx 1 2 x y y=ex 02exdx= limΔx0 ( e0Δx+ eΔxΔx+ e2ΔxΔx+ +e(2-Δx) Δx ) If Δx=13 then e0Δx+ eΔxΔx ++e2-Δx Δx = e013 e1313+ e2313+ e3313+ e4313+ e5313 = 13 ( e0+e13+ (e13)2+ (e13)3+ (e13)4+ (e13)5 ) = 13 (e63-1e13-1) =(e2-1) (13e13-1). If Δx=15 then e0Δx+ eΔxΔx+ +e2-Δx Δx = e015+e15 ·15++e95 ·15 = 15 ( e0+e15 +(e15)2 +(e15)3 ++(e15)9 ) = 15(e105-1e15-1) =(e2-1) 15e15-1. So 02exdx= limΔx0 ( e0Δx++ e2-ΔxΔx ) =limN (e2-1) (1Ne1N-1). Recall: limx0 ex-1x=1. So limNe1N-11N=1. So limN1Ne1N-1=1. So 02exdx= limN (e2-1) (1Ne1N-1) =(e2-1)·1= e2-1. Note: exdx=ex+c and ex+e|x=0x=2 =(e2+c)-(e0+c) =e2-1.

Notes and References

These are notes from a 2010 course on Real Analysis 620-295. This page comes from 100423Lect20.pdf and was given on 23 April 2010.

page history