Real Analysis

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 12 July 2014

Lecture 14

The Ratio test

Does n=1n!nn converge? n=1n!nn =1+222+3!33 +4!44+ Look at (n+1)! (n+1)n+1 n! nn = (n+1)!nn n!(n+1)n+1 = (n+1)nn (n+1)n+1 = nn(n+1)n= (nn+1)n= 1(1+1n)n < 12ifnis large enough. In fact 1(1+11)1=12 and 1(1+12)2=1(32)2=49<12. So n=1 n!nn = 1+2!22+ 3!33+ 4!44+ = 1+2!22+ 2!22 (3!332!22)+ 2!22 (3!332!22) (4!443!33) + < 1+2!22+ 2!22·12 +2!22· 12·12+ = 1+2!22 ( 1+12+ (12)2+ (12)3+ ) = 1+2!22 (11-12) =1+24·2=1+1=2. So n=1n!nn converges.

Let (an) be a sequence in 0.

(a) Assume limn(an+1an)=a exists and a<1. Then n=1an converges.
(b) Assume limnan+1an=a exists and a>1. Then n=1an diverges.

Proof.

Assume limnan+1an=a exists and a<1.
Let ε>0 so that a+ε<1.
Since limnan+1an=a there exists N>0 with an+1an<a+ε if n>0 with n>N.
Then n=1an = a1+a2++ aN+aN+1+ aN+2+ = a1++aN+ aN+1+aN+1 (aN+2aN+1) +aN+1 (aN+2aN+1) (aN+3aN+2) + < a1++aN+ aN+1+aN+1 (a+ε) +aN+1 (a+ε)2 + = a1++aN+ aN+1+ ( 1+(a+ε)+ (a+ε)2+ (a+ε)3+ ) = a1++aN+ aN+1 (11-(a+ε)). So n=1an converges.

(b) Assume limnan+1an exists and a>1.
Let ε>0 such that a-ε>1.
Let N>0 such that if n>0 and n>N then an+1an>a-ε.
Then n=1 an = a1++aN+ aN+1+ aN+2+ aN+3+ = a1++aN+ aN+1 ( 1+aN+2aN+1+ (aN+2aN+1) (aN+3aN+2) + ) > a1++aN+ aN+1 ( 1+(a-ε)+ (a-ε)2+ ) > a1++aN+ aN+1 ( 1+1+1+1+ ) So n=1an diverges.

Radius of convergence

Find the radius of convergence and interval of convergence of n=1 (2x-1)n n3 i.e. for which x does the series converge?

To analyse: n=1 (2x-1)nn1/3 =n=1ynn1/3, if y=2x-1.

Look at the ratios: yn+1 (n+1)1/3 yn n1/3 = |y|n1/3 (n+1)1/3 = |y| (1+1n)1/3 As n, limn |y| (1+1n)1/3 = |y| (1+0)1/3 =|y|. So, if |y|<1 then n=1|ynn1/3| converges and if |y|>1 then n=1|ynn1/3| diverges.

If |y|=1 then n=1 |ynn1/3|= n=11n1/3> n=11n diverges.

So, we can be sure that if |y|<1 then n=1ynn1/3 converges.

So if |2x-1|<1 then n=1(2x-1)nn1/3 converges.

So, if |x-12|<12 then n=1(2x-1)nn1/3 converges.

So, if x is inside the circle 1 2 + 0 i 1 + 0 i not i axis - i - 1 2 i 0 + i 1 2 i i axis then n=1(2x-1)nn1/3 converges.

Let r,s. Assume n=0ansn converges. If |r|<|s| then n=0an|r|n converges.

Proof.

Since n=0ansn converges limn|ansn|=0.

Let ε>0. Then there exists N>0 such that if n>0 and n>N then |ansn|<ε.

Then n=0 |anrn| = |a0|+ |a1r|++ |aNrN|+ |aN+1rN+1|+ = |a0|++ |aNrN|+ |aN+1sN+1| |rN+1sN+1|+ |aN+2sN+2| |rN+2sN+2|+ < |a0|++ |aNrN|+ ε |rN+1sN+1|+ ε |rN+2sN+2|+ ε |rN+3sN+3|+ = |a0|++ |aNrN|+ ε|rN+1sN+1| ( 1+|rs|+ |rss2|+ ) = |a0|++ |aNrN|+ ε|rN+1sN+1| ( 11-|r||s| ) . So n=0|an||rn| converges. So n=0anrn converges.

It follows that, if x is outside the circle 1 2 + 0 i 1 + 0 i not i axis - i - 1 2 i 0 + i 1 2 i i axis then n=1(2x-1)nn1/3 diverges.

What if x is on the circle?

Notes and References

These are notes from a 2010 course on Real Analysis 620-295. This page comes from 100331suggLect14.pdf and was given on 31 March 2010.

page history