Problem Set - Series

Problem Set - Series
620-295 Semester I 2010

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 10 March 2010

(1) Series
(2) Radius of convergence

Series

For each of the following series

(a) Write out the first five terms of the series,
(b) Write out the first five partial sums,
(c) Determine if the series converges,
(d) Apply the ratio test if applicable,
(e) Apply the root test, if applicable,
(f) Apply the integral test, if possible,
(g) determine if the series converges absolutely or conditionally,
(h) Apply the alternating series test, if appropriate.

Powers of n

n=1 1n5

n=1 1 n2+4

n=1 1n1/2

n=2 1 (n-1) 2

n=1 1 n2+1

n=2 n n3-1

n=1 1 n+1

n=2 1 n-1

n=1 n n2+1

n=2 1 n-1

n=1 n n+1

n=1 1 n7

n=1 1 n2+n

n=1 cosn n2

n=1 sinn 1+n2

n=1 2+cosn n2

n=1 1 2+n

n=1 sin2nx n2

n=1 3 n2+23

n=1 1 (4n-3) (4n+1)

n=1 2n+1 n2 (n+1) 2

n=1 3n 5n+1

n=1 an , where an = 2n 3n+1 .

n=1 1 n2+1

n=1 n n+1

n=1 1 n+2

n=1 3n2-2 n4+8n

n=1 2n n2+1

n=1 n n2+2

n=1 3 n2+23

n=1 n3+4n n4+200

n=1 4n2-2 3-5n2

n=1 n+3 2n2 n+7

n in the exponent

n=1 3+e-n 2n2/3-1

n=1 2 3n+1

n=1 sinn 5n

n=1 3n+1 4n+1

n=1 n3 2n

n=1 n3 4n

n=1 3n+7n 2n (n2+1)

n=1 2n n+1

n=1 n! nn

n=1 2n n!

n=1 ( n-1 n ) n

n=1 10 3n

n=1 1 3n

n=1 2-n 3n-1

n=1 1 n4n

n=1 1 1+3n

n=1 n! nn

n=1 n2 en

n=1 n3 2n

n=1 2n n+1

Alternating series

n=1 (-1)n 2n 4n2-3

n=1 (-1)n 3 5n

n=1 (-1)n 2n 4n-3

n=1 (-1)n n1/3

21 - 22 + 23 - 24 + 25 -

- 12 + 23 - 34 + 45 - 56 +

n=1 (-1)n log(n+1)

n=1 (-1)n n n2+1

n=0 (-2)n n!

k=1 ( (-2)k 7k + 1 4k-1 )

n=1 (-1)n n

n=1 (-1)n n2

n=1 (-1)n 1 2n+1

n=1 (-1)n logn n

n=1 (-1)n

n=1 (-1)n 1+3n 1+4n

1 - 12 + 14 - 18 +

1-3+9-27+

Other series

log 12 + log 23 + log 34 +

113 + 135 + 157 +

n=1 (n!)2 (2n)!

n=1 log ( (n+1)2 n(n+2) )

n=1 ( n+3n - n+2 n-1 )

n=1 ( 3 2n - 5 3n )

n=1 ( 1 n1.5 - 1 (n+1)1.5 )

n=1 log ( n n+1 )

n=1 ( exp( n+1 n ) - exp( n+2 n+1 ) )

Radius of convergence

For each of the following series find the set of x such that the series converges. Find the radius of convergence and the interval of convergence.

n=0 xn n+1

n=0 (-1)n (x+1)n (n+1)2

n=0 xn n!

n=1 (2x-1)n n3

n=0 x2n (2n)!

n=0 2 2n+1 x2n+1

n=0 x2n+1 (2n+1)!

n=0 (-1) n 2n+1 xn+1 n+1

k=1 (-1) k+1 2k xk k

n=1 nxn-1

n=2 n (n-1) xn-2

k=1 (-1) k+1 2kxk k

n=1 n xn

n=1 n 2n

n=2 n (n-1) xn

The power series expansion of sin(2x)
The power series expansion of cosx
The power series expansion of 1 1+x
The power series expansion of sinhx
The power series expansion of log(2x+1)
The power series expansion of (1+x) -2
The power series expansion of sin(θ2)
The power series expansion of xsin3x
The power series expansion of cos2x
The power series expansion of t 1+t
The power series expansion of z e2z
The power series expansion of sin(x2)
The power series expansion of 0t sinx2 dx
The power series expansion of sinhx x dx
The power series expansion of coshx-1 x2 dx
The Taylor series for sinx at the point a= 1 4 π
The Taylor series for cosx at the point a= 1 3 π
The Taylor series for 1 x at the point a=2 .
The Taylor series for ex at the point a=-3 .
The series representation for e2x in powers of x+1

The series representation for logx in powers of x-1 .

References

[Ca] S. Carnie, 620-143 Applied Mathematics, Course materials, 2006 and 2007.

[Ho] C. Hodgson, 620-194 Mathematics B and 620-211 Mathematics 2 Notes, Semester 1, 2005.