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Real analysis with applications

Before starting, copy the folder Lab4 from the lab server M&S Lab Materials\620-295 to D:MATLAB and set
the path to D:MATLAB including subfolders.

Laboratory Class 3:
Series, Taylor series and Fourier series

1 Series

Leibniz’ Theorem: If (an) is a monotonic sequence with an → 0, then the series
∑∞
n=1(−1)nan converges.

1.0.1 Exercise

Run Lab4Ex1.m . You should see a plot of the partial sums of a sequence that satisfies the conditions of Leibniz’
Theorem. Notice that the even partial sums and the odd partial sums separately form monotonic, bounded
(hence convergent) sequences.

This plot suggests (correctly) an proof of Leibniz’ Test: (Homework — not for the Lab)

i. Show from the assumptions that the two subsequences of even and odd partial sums are monotonic and
bounded (hence convergent) with limits S1 and S2.

ii. Since an → 0 by assumption, prove that S1 = S2 and so the series converges.

Notice from the plot that at any stage the limit lies between the latest even partial sum and the latest odd
partial sum. This suggests the error bound for alternating series:

Error of Alternating Sum: For a series satisfying the assumptions of Leibniz’ Test, the error of the partial
sum with n terms is bounded by the absolute value of the first neglected term.

|Sn − S| ≤ |an+1| (1)

Optional: prove the error bound in Eq. 1.

2 Taylor series

2.1 Taylor polynomials

Your demonstrator will show you the use of taylortool.m, a program that illustrates the approximation of
functions by Taylor polynomials.

2.1.1 Exercise

Try the following examples. In each case, experiment with values of N to plot the Taylor polynomials TN (x)
approximating the given function f . You can also use the GUI to change the function and the plotting interval
(set to [−π, π]) by default).
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taylortool(’sin(x)’)
taylortool(’cos(x)’)

What happens to the region where f is well-approximated by TN (x) as N increases? Can you explain why the
Taylor polynomial only changes for every other value of N?

taylortool(’1/(1+x^2)’)
taylortool(’log(1+x)’)

What happens to the region where f is well-approximated by TN (x) as N increases? Why?

taylortool(’exp(-x^2)’)

taylortool(’1/exp(1/x^2)’)

What’s going on?

2.2 An application to integration

2.2.1 Exercise

Using the Maclaurin series for exp(x), show that the integral I =
∫ 1

0
exp(−x2) dx can be expressed as the

alternating series

I =
∞∑
n=0

(−1)n
1
n!

1
2n+ 1

Modify Lab4Ex1 to compute the partial sums SN up to N = 10.
Note: see help factorial to learn how to compute n! in Matlab.

2.2.2 Exercise

Use Eq. 1 to estimate the error in your estimated value of I. Run your modified program again with N = 15.
The result should be consistent with your error estimate.

You can’t go much further doing ordinary computing since you’ve reached the accuracy attainable using ‘dou-
ble precision numbers’. For more accuracy, you can use ‘variable precision arithmetic’ in a symbolic computing
environment.

3 Fourier series

Your demonstrator will show you the use of fsgui.m, a program that illustrates the approximation of periodic
functions by Fourier series.

3.1 Examples

3.1.1 Exercise

In the command window, enter fsgui. Enter the function f(x) = sin(x): (use the Function menu to enter
sin(x)). The plot shows the partial sum SN of the Fourier series

f(x) = a0 +
∞∑
k=1

(ak cos kt+ bk sin kt) (2)

with the top harmonic (i.e. value of N) controlled using right and left arrows or by editing the value. By editing
the value, start from N = 1.

The default window shows the partial Fourier sum in the top pane and the error |f(x) − SN (x)| in the
bottom pane. It might seem strange that the error is not zero when N = 1 — it’s because the coefficients are
computed numerically using a trapezoid approximation.
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3.1.2 Exercise

Try the following functions: (use the Function menu to enter new functions — array operators are not required,
so that x^2 works fine)

f(x) = cosx; f(x) = sinx cos 6x; f(x) = exp(sin(x)); f(x) = exp(−2x2);
f(x) = x2; f(x) = |x|; f(x) = x; f(x) =sign(x)

In each case, experiment with N to see how well the function is approximated and where the error is largest.

3.2 Fourier coefficients

A radio button allows you to see the Fourier coefficients (ak, bk) used to construct the Fourier sums.
For f(x) = sin(x), the function is a single sinusoid, so you should have b1 = 1, with all other coefficients

vanishing. Check whether this holds.

3.2.1 Exercise

For f(x) = cosx and f(x) = sinx cos 6x, check that the coefficients are what you expect.
In some of these cases, all the ak or all the bk vanish — explain why.
In some of these cases, the coefficients decay rapidly with k; in some cases, the decay is slow. Can you guess

what influences the rate of decay of coefficients?

3.3 Ringing

For f(x) = x and f(x) = sign(x), the partial sums are particularly inaccurate. What feature of f is causing
this phenomenon?

For more information, look up ‘Gibbs phenomenon’ on Wikipedia.

3.4 Complex Fourier series

A beautifully symmetric form of the Fourier series of a function results from using complex exponentials, rather
than sinusoids, as the basis functions.

3.4.1 Exercise

By using the identities

cos kt =
1
2

(eikt + e−ikt) and sin kt =
1
2i

(eikt − ie−ikt)

show that Eq. 3 can be re-written as

f(t) =
∞∑
−∞

cke
ikt (3)

with the complex Fourier coefficients ck defined by

ck =


1
2 (ak − ibk), if k ≥ 1,
a0, if k = 0,
1
2 (a−k + ib−k), if k ≤ −1,

so that ck =
1

2π

∫ 2π

0

f(t)e−ikt dt (4)

Eqs. 3–4 are an alternative form for the Fourier series of f . The coefficients ck are now complex numbers,
so harder to visualize. Their modulus is given by

|ck| =
1
2

(a2
k + b2k)1/2, for k > 0,

This can be plotted in fsgui by using the third radio button.

3.5 Finally

When the function f is only defined at discrete values of t, a pair of equations similar to Eqs. 3–4 can be
derived, and defines the Discrete Fourier Transform (DFT) of a discrete periodic function f . The DFT is an
important tool in the fields of signal processing and image processing.
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