3.2 Functions

Functions are for comparing sets.

Let *S* and *T* be sets. A *function from S to T* is a subset $\Gamma_f \subseteq S \times T$ such that

if $s \in S$ then there exists a unique $t \in T$ such that $(s, t) \in \Gamma_f$.

Write

$$
\Gamma_f = \{(s, f(s)) \mid s \in S\}
$$

so that the function Γ_f can be expressed as

an "assignment"
$$
f: S \rightarrow T
$$

 $s \mapsto f(s)$

which must satisfy

- (a) If $s \in S$ then $f(s) \in T$, and
- (b) If $s_1, s_2 \in S$ and $s_1 = s_2$ then $f(s_1) = f(s_2)$.

Let *S* and *T* be sets.

• Two functions $f: S \to T$ and $q: S \to T$ are *equal* if they satisfy

if
$$
s \in S
$$
 then $f(s) = g(s)$.

• A function $f: S \to T$ is *injective* if *f* satisfies the condition

if
$$
s_1, s_2 \in S
$$
 and $f(s_1) = f(s_2)$ then $s_1 = s_2$.

• A function $f: S \to T$ is *surjective* if *f* satisfies the condition

if $t \in T$ then there exists $s \in S$ such that $f(s) = t$.

• A function $f: S \to T$ is *bijective* if *f* is both injective and surjective.

Examples. It is useful to visualize a function $f: S \to T$ as a graph with edges $(s, f(s))$ connecting elements $s \in S$ and $f(s) \in T$. With this in mind the following are examples:

In these pictures the elements of the left column are the elements of the set *S* and the elements of the right column are the elements of the set *T*. In order to be a function the graph must have exactly one edge adjacent to each point in *S*. The function is injective if there is at most one edge adjacent to each point in *T*. The function is surjective if there is at least one edge adjacent to each point in *T*.

3.3 Composition of functions

Let $f: S \to T$ and $g: T \to U$ be functions. The *composition* of f and g is the function

$$
g \circ f
$$
 given by $\begin{array}{ccc} g \circ f: & S & \to & U \\ s & \mapsto & g(f(s)) \end{array}$

Let *S* be a set. The *identity map on S* is the function given by

$$
\operatorname{id}_S: \quad S \quad \to \quad Ss \quad \mapsto \quad s
$$

Let $f: S \to T$ be a function. The *inverse function to* f is a function

$$
f^{-1}: T \to S
$$
 such that $f \circ f^{-1} = id_T$ and $f^{-1} \circ f = id_S$.

Theorem 3.1. Let $f: S \to T$ be a function. An inverse function to f exists if and only if f is *bijective.*

Representing functions as graphs, the identity function id*^S* looks like

In the pictures below, if the left graph is a pictorial representation of a function $f: S \to T$ then the inverse function to f, $f^{-1}: T \to S$, is represented by the graph on the right; the graph for f^{-1} is the mirror-image of the graph for *f*.

Graph (d) below, represents a function $g: S \to T$ which is not bijective. The inverse function to *g* does not exist in this case: the graph (e) of a possible candidate, is not the graph of a function.

3.4 Cardinality

Let *S* and *T* be sets. The sets *S and T are isomorphic*, or *have the same cardinality*

if there is a bijective function $\varphi: S \to T$.

Write

$$
Card(S) = Card(T) \qquad \text{if } S \text{ and } T \text{ have the same cardinality.}
$$

Notation: Let *S* be a set. Write

$$
Card(S) = \begin{cases} 0, & \text{if } S = \emptyset, \\ n, & \text{if } Card(S) = Card(\{1, 2, ..., n\}), \\ \infty, & \text{otherwise.} \end{cases}
$$

Note that even in the cases where $Card(S) = \infty$ and $Card(T) = \infty$ it may be that $Card(S) \neq Card(T)$. Let *S* be a set.

- The set *S* is *finite* if there exists $n \in \mathbb{Z}_{\geq 0}$ such that $Card(S) = Card({1, ..., n}).$
- *•* The set *S* is *infinite* if Card(*S*) is not finite.
- The set *S* is *countable* if $Card(S) = Card(\mathbb{Z}_{>0})$ or *S* is finite.
- *•* The set *S* is *countably infinite* if *S* is countable and infinite.
- *•* The set *S* is *uncountable* if *S* is not countable.

3.5 Images and fibers

Let $f: S \to T$ be a function. Let $A \subseteq S$ and let $B \subseteq T$. The *image of A* is

$$
f(A) = \{f(a) | a \in A\}
$$
 and $f^{-1}(B) = \{s \in S | f(s) \in B\},\$

is the *fiber over B*. Let $t \in T$. The *fiber over t* is

$$
f^{-1}(t) = f^{-1}(\lbrace t \rbrace) = \lbrace s \in S \mid f(s) = t \rbrace
$$
 and $im(f) = f(S) = \lbrace f(s) \mid s \in S \rbrace$

is the *image of f*.

Let $S/(f)$ be the set of fibers of f ,

$$
S(f) = \{ f^{-1}(t) \mid t \in T \}.
$$

The elements of $S(f)$ are, themselves, sets. Then

$$
\hat{f}: \quad \begin{array}{ccccccc}\nS_f & \to & \operatorname{im}(f) & & p: & S & \to & S_f & & \iota: & \operatorname{im}(f) & \to & T \\
f^{-1}(t) & \mapsto & t, & & s & \to & f^{-1}(f(s)), & & f(s) & \to & f(s)\n\end{array}
$$

define functions such that

(a) \hat{f} is bijective, (b) *p* is surjective, (c) ι is injective, and $f = \iota \circ \hat{f} \circ p$.