- (Fa) If $a, b, c \in \mathbb{F}$ then (a+b) + c = a + (b+c),
- (Fb) If $a, b \in \mathbb{F}$ then a + b = b + a,
- (Fc) There exists $0 \in \mathbb{F}$ such that

if $a \in \mathbb{F}$ then 0 + a = a and a + 0 = a,

(Fd) If $a \in \mathbb{F}$ then there exists $-a \in \mathbb{F}$ such that a + (-a) = 0 and (-a) + a = 0, (Fe) If $a, b, c \in \mathbb{F}$ then (ab)c = a(bc), (Ff) If $a, b, c \in \mathbb{F}$ then

(a+b)c = ac+bc and c(a+b) = ca+cb,

(Fg) There exists $1 \in \mathbb{F}$ such that

if
$$a \in \mathbb{F}$$
 then $1 \cdot a = a$ and $a \cdot 1 = a$.

(Fh) If $a \in \mathbb{F}$ and $a \neq 0$ then there exists $a^{-1} \in \mathbb{F}$ such that $aa^{-1} = 1$ and $a^{-1}a = 1$, (Fi) If $a, b \in \mathbb{F}$ then ab = ba.

Proposition 13.3. Let \mathbb{F} be a field.

(a) If a ∈ F then a ⋅ 0 = 0.
(b) If a ∈ F then -(-a) = a.
(c) If a ∈ F and a ≠ 0 then (a⁻¹)⁻¹ = a.
(d) If a ∈ F then a(-1) = -a.
(e) If a, b ∈ F then (-a)b = -ab.
(f) If a, b ∈ F then (-a)(-b) = ab.
Proof.
(a) Assume a ∈ F.

$$a \cdot 0 = a \cdot (0+0), \quad \text{by (Fc)},$$
$$= a \cdot 0 + a \cdot 0, \quad \text{by (Ff)}.$$

Add $-a \cdot 0$ to each side and use (Fd) to get $0 = a \cdot 0$.

(b) Assume $a \in \mathbb{F}$. By (Fd),

-(-a) + (-a) = 0 = a + (-a).

Add -a to each side and use (Fd) to get -(-a) = a.

(c) Assume $a \in \mathbb{F}$ and $a \neq 0$. By (Fh),

$$(a^{-1})^{-1} \cdot a^{-1} = 1 = a \cdot a^{-1}.$$

Multiply each side by a and use (Fh) and (Fg) to get $(a^{-1})^{-1} = a$. (d) Assume $a \in \mathbb{F}$.

By (Ff),

$$a(-1) + a \cdot 1 = a(-1+1) = a \cdot 0 = 0,$$

where the last equality follows from part (a).

So, by (Fg), a(-1) + a = 0. Add -a to each side and use (Fd) and (Fc) to get a(-1) = -a. (e) Assume $a, b \in \mathbb{F}$.

$$(-a)b + ab = (-a + a)b, \text{ by (Ff)},$$
$$= 0 \cdot b, \text{ by (Fd)},$$
$$= 0, \text{ by part (a)}.$$

Add -ab to each side and use (Fd) and (Fc) to get (-a)b = -ab. (f) Assume $a, b \in \mathbb{F}$.

$$(-a)(-b) = -(a(-b)),$$
 by (e),
= $-(-ab),$ by (e),
= $ab,$ by part (b).

13.4.4 Identities in an ordered fiel

An ordered field is a field \mathbb{F} with a total order \leq such that (OFa) If $a, b, c \in \mathbb{F}$ and $a \leq b$ then $a + c \leq b + c$, (OFb) If $a, b \in \mathbb{F}$ and $a \geq 0$ and $b \geq 0$ then $ab \geq 0$.

Proposition 13.4. Let \mathbb{F} be an ordered field.

(a) If $a \in \mathbb{F}$ and a > 0 then -a < 0.

- (b) If $a \in \mathbb{F}$ and $a \neq 0$ then $a^2 > 0$.
- (c) $1 \ge 0$.
- (d) If $a \in \mathbb{F}$ and a > 0 then $a^{-1} > 0$.
- (e) If $a, b \in \mathbb{F}$ and $a \ge 0$ and $b \ge 0$ then $a + b \ge 0$.
- (f) If $a, b \in \mathbb{F}$ and 0 < a < b then $b^{-1} < a^{-1}$.

Proof.

(a) Assume $a \in \mathbb{F}$ and a > 0. Then a + (-a) > 0 + (-a), by (OFb). So 0 > -a, by (Fd) and (Fc).

```
(b) Assume a \in \mathbb{F} and a \neq 0.

Case 1: a > 0.

Then a \cdot a > a \cdot 0, by (OFb).

So a^2 > 0, by part (a).

Case 2: a < 0.

Then -a > 0, by part (a).

Then (-a)^2 > 0, by Case 1.
```

So $a^2 > 0$, by Proposition 13.3 (f).

- (c) To show: $1 \ge 0$. $1 = 1^2 \ge 0$, by part (b).
- (d) Assume $a \in \mathbb{F}$ and a > 0. By part (b), $a^{-2} = (a^{-1})^2 > 0$. So $a(a^{-1})^2 > a \cdot 0$, by (OFb). So $a^{-1} > 0$, by (Fh) and Proposition 13.3 (a).
- (e) Assume $a, b \in \mathbb{F}$ and $a \ge 0$ and $b \ge 0$.
 - $a + b \ge 0 + b, \quad \text{by (OFa)},$ $\ge 0 + 0, \quad \text{by (OFa)},$ $= 0, \quad \text{by (Fc)}.$
- (f) Assume $a, b \in \mathbb{F}$ and 0 < a < b. So a > 0 and b > 0. Then, by part (d), $a^{-1} > 0$ and $b^{-1} > 0$. Thus, by (OFb), $a^{-1}b^{-1} > 0$. Since a < b, then b - a > 0, by (OFa). So, by (OFb), $a^{-1}b^{-1}(b - a) > 0$. So, by (Fh), $a^{-1} - b^{-1} > 0$. So, by (OFa), $a^{-1} > y^{-1}$.

Proposition 13.5. Let \mathbb{F} be an ordered field and let $x, y \in \mathbb{F}$ with $x \ge 0$ and $y \ge 0$. Then

 $x \le y$ if and only if $x^2 \le y^2$.

Proof. Assume $x, y \in S$ and $x \ge 0$ and $y \ge 0$. To show: (a) If $x \le y$ then $x^2 \le y^2$. (b) If $x^2 \le y^2$ then $x \le y$.

(b) Assume $x^2 \leq y^2$. Adding $(-x^2)$ to each side and using (OFa) gives $y^2 + (-x^2) \geq x^2 + (-x^2) = 0$. So $y^2 - x^2 \geq 0$. Using Proposition 13.3(e) and axioms (Ff) and (Fi),

$$(y-x)(y+x) = yy + (-x)y + yx + (-x)x = y^{2} + (-xy) + xy + (-xx)$$
$$= y^{2} + 0 - x^{2} = y^{2} - x^{2}.$$

So $(y-x)(y+x) \ge 0$.

By Proposition 13.4 (e) and Proposition 13.4 (d), since $x \ge 0$ and $y \ge 0$ then $x + y \ge 0$ and $(x + y)^{-1} > 0$ (or x = 0 and y = 0). So, by (OFb), $(y - x)(y + x)(x + y)^{-1} \ge 0$. Using (Fg), then $y - x \ge 0$. Adding x to both sides and using (OFa) gives $y \ge x$.

(a) Assume $y \ge x$.

Then $y - x \ge 0$.

Since $y \ge 0$ and $x \ge 0$ then, by (OFa), $(y+x) \ge y+0 = y \ge 0$. So, by (OFb), $(y-x)(y+x) \ge 0$. So $y^2 - x^2 \ge 0$. So $y^2 \ge x^2$.