- (Fa) If $a, b, c \in \mathbb{F}$ then $(a + b) + c = a + (b + c)$,
- (Fb) If $a, b \in \mathbb{F}$ then $a + b = b + a$,
- (Fc) There exists $0 \in \mathbb{F}$ such that

if $a \in \mathbb{F}$ then $0 + a = a$ and $a + 0 = a$,

(Fd) If $a \in \mathbb{F}$ then there exists $-a \in \mathbb{F}$ such that $a + (-a) = 0$ and $(-a) + a = 0$, (Fe) If $a, b, c \in \mathbb{F}$ then $(ab)c = a(bc)$, (Ff) If $a, b, c \in \mathbb{F}$ then

 $(a + b)c = ac + bc$ and $c(a + b) = ca + cb$,

(Fg) There exists $1 \in \mathbb{F}$ such that

$$
if a \in \mathbb{F} \quad then \quad 1 \cdot a = a \text{ and } a \cdot 1 = a,
$$

(Fh) If $a \in \mathbb{F}$ and $a \neq 0$ then there exists $a^{-1} \in \mathbb{F}$ such that $aa^{-1} = 1$ and $a^{-1}a = 1$, (Fi) If $a, b \in \mathbb{F}$ then $ab = ba$.

Proposition 13.3. *Let* F *be a field.*

(a) If $a \in \mathbb{F}$ then $a \cdot 0 = 0$. *(b)* If $a \in \mathbb{F}$ then $-(-a) = a$. *(c) If* $a \in \mathbb{F}$ *and* $a \neq 0$ *then* $(a^{-1})^{-1} = a$ *. (d)* If $a \in \mathbb{F}$ then $a(-1) = -a$. (e) If $a, b \in \mathbb{F}$ then $(-a)b = -ab$. *(f)* If $a, b \in \mathbb{F}$ then $(-a)(-b) = ab$. *Proof.* (a) Assume $a \in \mathbb{F}$.

$$
a \cdot 0 = a \cdot (0 + 0), \quad \text{by (Fc)},
$$

= $a \cdot 0 + a \cdot 0, \quad \text{by (Ff)}.$

Add $-a \cdot 0$ to each side and use (Fd) to get $0 = a \cdot 0$.

(b) Assume $a \in \mathbb{F}$. By (Fd),

 $-(-a) + (-a) = 0 = a + (-a)$.

Add $-a$ to each side and use (Fd) to get $-(-a) = a$.

(c) Assume $a \in \mathbb{F}$ and $a \neq 0$. By (Fh),

$$
(a^{-1})^{-1} \cdot a^{-1} = 1 = a \cdot a^{-1}.
$$

Multiply each side by *a* and use (Fh) and (Fg) to get $(a^{-1})^{-1} = a$. (d) Assume $a \in \mathbb{F}$.

By (Ff) ,

$$
a(-1) + a \cdot 1 = a(-1+1) = a \cdot 0 = 0,
$$

where the last equality follows from part (a).

So, by (Fg), $a(-1) + a = 0$. Add $-a$ to each side and use (Fd) and (Fc) to get $a(-1) = -a$. (e) Assume $a, b \in \mathbb{F}$.

$$
(-a)b + ab = (-a + a)b, \text{ by (Ff)},
$$

= 0 · b, by (Fd),
= 0, by part (a).

Add $-ab$ to each side and use (Fd) and (Fc) to get $(-a)b = -ab$. (f) Assume $a, b \in \mathbb{F}$.

$$
(-a)(-b) = -(a(-b)), \text{ by (e)},
$$

$$
= -(-ab), \text{ by (e)},
$$

$$
= ab, \text{ by part (b)}.
$$

An *ordered field* is a field \mathbb{F} with a total order \leq such that (OFa) If $a, b, c \in \mathbb{F}$ and $a \leq b$ then $a + c \leq b + c$, (OFb) If $a, b \in \mathbb{F}$ and $a \ge 0$ and $b \ge 0$ then $ab \ge 0$.

Proposition 13.4. *Let* F *be an ordered field.*

(a) If $a \in \mathbb{F}$ and $a > 0$ then $-a < 0$.

- *(b) If* $a \in \mathbb{F}$ *and* $a \neq 0$ *then* $a^2 > 0$ *.*
- *(c)* $1 \geq 0$ *.*
- *(d) If* $a \in \mathbb{F}$ *and* $a > 0$ *then* $a^{-1} > 0$ *.*
- *(e) If* $a, b \in \mathbb{F}$ *and* $a \ge 0$ *and* $b \ge 0$ *then* $a + b \ge 0$ *.*
- *(f) If* $a, b \in \mathbb{F}$ *and* $0 < a < b$ *then* $b^{-1} < a^{-1}$ *.*

Proof.

(a) Assume $a \in \mathbb{F}$ and $a > 0$. Then $a + (-a) > 0 + (-a)$, by (OFb). So $0 > -a$, by (Fd) and (Fc).

```
(b) Assume a \in \mathbb{F} and a \neq 0.
Case 1: a > 0.
         Then a \cdot a > a \cdot 0, by (OFb).
         So a^2 > 0, by part (a).
Case 2 : a < 0.
         Then -a > 0, by part (a).
         Then (-a)^2 > 0, by Case 1.
         So a^2 > 0, by Proposition \boxed{13.3} (f).
```
 \Box

- (c) To show: $1 > 0$. $1 = 1^2 \ge 0$, by part (b).
- (d) Assume $a \in \mathbb{F}$ and $a > 0$. By part (b), $a^{-2} = (a^{-1})^2 > 0$. So $a(a^{-1})^2 > a \cdot 0$, by (OFb). So $a^{-1} > 0$, by (Fh) and Proposition 13.3 (a).
- (e) Assume $a, b \in \mathbb{F}$ and $a \geq 0$ and $b \geq 0$.
	- $a + b \geq 0 + b$, by (OFa), $\geq 0+0$, by (OFa), $= 0$, by (Fc) .
- (f) Assume $a, b \in \mathbb{F}$ and $0 < a < b$. So $a > 0$ and $b > 0$. Then, by part (d), $a^{-1} > 0$ and $b^{-1} > 0$. Thus, by (OFb), $a^{-1}b^{-1} > 0$. Since $a < b$, then $b - a > 0$, by (OFa). So, by (OFb), $a^{-1}b^{-1}(b-a) > 0$. So, by (Fh), $a^{-1} - b^{-1} > 0$. So, by (OFa), $a^{-1} > y^{-1}$.

Proposition 13.5. Let \mathbb{F} be an ordered field and let $x, y \in \mathbb{F}$ with $x \geq 0$ and $y \geq 0$. Then

 $x \leq y$ *if and only if* $x^2 \leq y^2$.

 \Box

Proof. Assume $x, y \in S$ and $x \ge 0$ and $y \ge 0$. To show: (a) If $x \leq y$ then $x^2 \leq y^2$. (b) If $x^2 \leq y^2$ then $x \leq y$.

(b) Assume $x^2 \leq y^2$. Adding $(-x^2)$ to each side and using (OFa) gives $y^2 + (-x^2) \ge x^2 + (-x^2) = 0$. So $y^2 - x^2 \ge 0$. Using Proposition $[13.3(e)$ and axioms (Ff) and (Fi),

$$
(y-x)(y+x) = yy + (-x)y + yx + (-x)x = y2 + (-xy) + xy + (-xx)
$$

= $y2 + 0 - x2 = y2 - x2$.

So $(y - x)(y + x) \ge 0$.

By Proposition $[13.4]$ e) and Proposition $[13.4]$ (d) , since $x \ge 0$ and $y \ge 0$ then $x + y \ge 0$ and $(x + y)^{-1} > 0$ (or $x = 0$ and $y = 0$). So, by (OFb), $(y-x)(y+x)(x+y)^{-1} \ge 0$. Using (Fg), then $y - x > 0$. Adding x to both sides and using (OFa) gives $y > x$.

(a) Assume $y \geq x$.

Then $y - x \geq 0$.

Since $y \ge 0$ and $x \ge 0$ then, by (OFa), $(y + x) \ge y + 0 = y \ge 0$. So, by (OFb), $(y - x)(y + x) \ge 0$. So $y^2 - x^2 \ge 0$. So $y^2 \ge x^2$.

 $\hfill \square$