3 Sets and functions

3.1 Sets

A set is a collection of objects which are called elements.

Write

 $s \in S$ if s is an element of the set S.

- The *empty set* \emptyset is the set with no elements.
- A subset T of a set S is a set T such that if $t \in T$ then $t \in S$.

Write

 $T \subseteq S$ if T is a subset of S, and T = S if the set T is equal to the set S.

More precisely, T = S if $T \subseteq S$ and $S \subseteq T$.

Let S and T be sets.

• The union of S and T is the set $S \cup T$ of all u such that $u \in S$ or $u \in T$,

$$S \cup T = \{u \mid u \in S \text{ or } u \in T\}.$$

• The intersection of S and T is the set $S \cup T$ of all u such that $u \in S$ and $u \in T$,

$$S \cap T = \{u \mid u \in S \text{ and } u \in T\}.$$

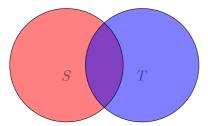
• The product S and T is the set $S \times T$ of all ordered pairs (s,t) where $s \in S$ and $t \in T$,

$$S \times T = \{(s, t) \mid s \in S \text{ and } t \in T\}.$$

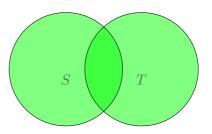
The sets S and T are disjoint if $S \cap T = \emptyset$.

The set S is a proper subset of T if $S \subseteq T$ and $S \neq T$. Write

 $S \subseteq T$ if S is a proper subset of T.



The red (and purple) region is SThe blue (and purple) region is Tthe purple region is $S \cap T$



the green region is $S \cup T$