2 Some lectures

2.1 Calculus, Functions and inverse functions

Calculus is the study of

- (1) Derivatives (3) Applications of derivatives
- (2) Integrals (4) Applications of integrals

A derivative is a creature you put a function into, it chews on it, and spits out a new function.

$$f \to \boxed{\frac{d}{dx}} \to \frac{df}{dx}$$

.

The *integral* is the derivative backwards:

$$f \leftarrow \int dx \leftarrow \frac{df}{dx}$$
 or $\frac{df}{dx} \rightarrow \int dx \rightarrow f.$

A *function* is one down on the food chain.

$$\begin{array}{ccc} \text{input} & \text{output} \\ \text{number} & \rightarrow & f \\ x & & f(x) \end{array}$$

Functions take a number as input, chew on it a bit, and spit out a new number. The *inverse function* to f is f backwards:

$$x \leftarrow f^{-1} \leftarrow f(x)$$
 or $f^{-1} \leftarrow f(x)$ $f^{-1} \to x$
 $z \to f^{-1}(z)$

Example.

The inverse function is not always a function because there might be some uncertainty about what the inverse function will spit out:

$$9 \to f^{-1}(x) = \sqrt{x} \to 3$$
 or $9 \to f^{-1}(x) = \sqrt{x} \to -3.$

Numbers are at the very bottom of the food chain.

2.1.1 And so we discovered ... Numbers

At some point humankind wanted to count things and discovered the **positive integers**,

$$1, 2, 3, 4, 5, \ldots$$

GREAT for counting something,

BUT what if you don't have anything? How do we talk about nothing, nulla, zilch? ... and so we discovered the **nonnegative integers**,

$$0, 1, 2, 3, 4, 5, \ldots$$

GREAT for adding,

5+3=8, 0+10=10, 21+37=48,

BUT not so great for subtraction,

$$5-3=2, \ 2-0=2, \ 12-34=???$$

... and so we discovered the **integers**

 $\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots$

GREAT for adding, subtracting and multiplying,

 $3 \cdot 6 = 18, -3 \cdot 2 = -6, 0 \cdot 7 = 0,$

BUT not so great if you only want part of the sausage ..., ... and so we discovered the **rational numbers**,

 $\frac{a}{b}$, a an integer, b an integer, $b \neq 0$.

GREAT for addition, subtraction, multiplication, and division,

BUT not so great for finding $\sqrt{2} = ????$,

... and so we discovered the **real numbers**,

all decimal expansions.

Examples:

 $\begin{aligned} \pi &= 3.1415926\dots, \\ e &= 2.71828\dots, \\ \sqrt{2} &= 1.414\dots, \\ 10 &= 10.0000\dots, \end{aligned}$ $\begin{aligned} \frac{1}{3} &= .3333\dots, \\ \frac{1}{8} &= .125 = .125000000\dots, \\ \frac{1}{8} &= .125 = .125000000\dots, \end{aligned}$

GREAT for addition, subtraction, multiplication, and division,

BUT not so great for finding $\sqrt{-9} = ????$,

... and so we discovered the **complex numbers**,

a + bi, a a real number, b a real number, $i = \sqrt{-1}$.

2.1.2 Operations on complex numbers

Examples of complex numbers: $3 + \sqrt{2}i$, 6 = 6 + 0i, $\pi + \sqrt{7}i$, and $\sqrt{-9} = \sqrt{9(-1)} = \sqrt{9}\sqrt{-1} = 3i.$

GREAT.

$$(3+4i)(7+9i) = 3(7+9i) + 4i(7+9i)$$

= 21 + 27i + 28i + 36i²
= 21 + 55i - 36
= -15 + 55i.

Division:

$$\frac{3+4i}{7+9i} = \frac{(3+4i)}{(7+9i)} \frac{(7-9i)}{(7-9i)} = \frac{21-27i+28i+36}{49-63i+63i+81}$$
$$= \frac{57+i}{130} = \frac{57}{130} + \frac{1}{130}i.$$

Square Roots: We want $\sqrt{-3+4i}$ to be some a+bi.

If
$$\sqrt{-3+4i} = a+bi$$

then

$$-3 + 4i = (a + bi)^2 = a^2 + abi + abi + b^2 i^2$$
$$= a^2 - b^2 + 2abi.$$

So

$$a^2 - b^2 = -3$$
 and $2ab = 4$.

Solve for a and b.

$$b = \frac{4}{2a} = \frac{2}{a}.$$
 So $a^2 - \left(\frac{2}{a}\right)^2 = -3.$
So $a^2 - \frac{4}{a^2} = -3.$
So $a^4 - 4 = -3a^2.$
So $a^4 + 3a^2 - 4 = 0.$
So $(a^2 + 4)(a^2 - 1) = 0.$

So $a^2 = -4$ or $a^2 = 1$. So $a = \pm 1$, and $b = \frac{2}{\pm 1} = 2$ or -2. So a + bi = 1 + 2i or a + bi = -1 - 2i. So $\sqrt{-3 + 4i} = \pm (1 + 2i)$. Graphing:

Really, the *i*-axis and not-*i*-axis should be properly labeled

Factoring:

$$x^{2} + 5 = (x + \sqrt{5}i)(x - \sqrt{5}i),$$

$$x^{2} + x + 1 = \left(x - \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)$$

This is REALLY why we like the complex numbers.

The fundamental theorem of algebra says that ANY POLYNOMIAL

(for example, $x^{12673} + 2563x^{159} + \pi x^{121} + \sqrt{7}x^{23} + 9621\frac{1}{2}$)

can be factored completely as

 $(x-u_1)(x-u_2)\cdots(x-u_n)$

if f(x) gets closer and closer to 10

and closer to 2.

where u_1, u_2, \ldots, u_n are complex numbers.

2.2 Limits

$$\lim_{x \to 2} f(x) = 10 \qquad \text{if } f(x) \text{ gets closer}$$

Example. Evaluate $\lim_{x \to 2} \frac{3x^2 + 8}{x^2 - x}$.
When $x = 1$, $\frac{3x^2 + 8}{x^2 - x} = 11$.
When $x = 1.5$, $\frac{3x^2 + 8}{x^2 - x} = 19.66...$
When $x = 1.9$, $\frac{3x^2 + 8}{x^2 - x} = 11.011...$
When $x = 1.99$, $\frac{3x^2 + 8}{x^2 - x} = 10.091...$
When $x = 1.999$, $\frac{3x^2 + 8}{x^2 - x} = 10.00901...$
When $x = 1.9999$, $\frac{3x^2 + 8}{x^2 - x} = 10.000901...$

 So

$$\lim_{x \to 2} \frac{3x^2 + 8}{x^2 - x} = 10.$$