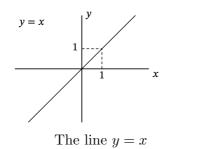
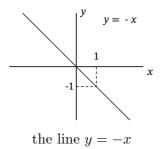
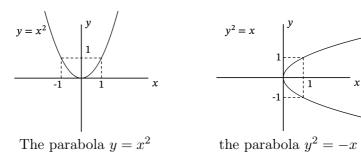
6.6 basic graphs

6.6.1 The basic line y = x

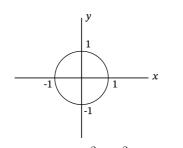




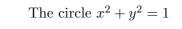
6.6.2 The basic parabola $y = x^2$



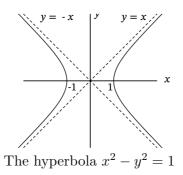
6.6.3 The basic circle $x^2 + y^2 = 1$



All points that are distance 1 from the origin.



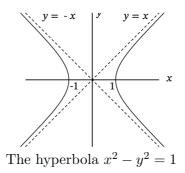
6.6.4 The basic hyperbola $x^2 - y^2 = 1$



See Section 6.7 for notes on how to derive the graph of the basic hyperbola $x^2 - y^2 = 1$.

6.7 Asymptotes

A **asymptote** of a graph y = f(x) as $x \to a$ is another graph y = g(x) that the original graph y = f(x) gets closer and closer to as x gets closer and closer to a. **Example:** Graph the basic hyperbola $x^2 - y^2 = 1$.



Graphing notes:

- (a) If y = 0 then $x^2 = 1$. So $x = \pm 1$.
- (b) If x = 0 then $-y^2 = 1$ which is impossible for $y \in \mathbb{R}$.
- (c) The equation is $1 \left(\frac{y}{x}\right)^2 = \left(\frac{1}{x}\right)^2$.

If x gets very big then $\frac{1}{x}$ gets closer and closer to 0 and the equation gets closer and closer to $1 - \left(\frac{y}{x}\right)^2 = 0$. This is the same as $\left(\frac{y}{x}\right)^2 = 1$, which is the same as $\frac{y}{x} = \pm 1$, i.e. $y = \pm x$. So, as x gets very large the equation gets closer and closer to y = x and y = -x. As x gets very negative the basic hyperbola gets closer and closer to y = x and y = -x.

Asymptotes:

y = x is an asymptote of the basic hyperbola as $x \to +\infty$ y = -x is an asymptote of the basic hyperbola as $x \to +\infty$ y = x is an asymptote of the basic hyperbola as $x \to -\infty$ y = -x is an asymptote of the basic hyperbola as $x \to -\infty$.

then $\frac{1}{x}$ gets larger and larger.

(e) If x = 1 then y = 1. (f) If x = -1 then y = -1.

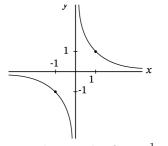
(a) As x gets large ¹/_x gets closer and closeer to 0.
(b) As x gets closer to 0 (from the positive side)

(c) As x gets closer to 0 (from the negative side)

(d) As \overline{x} gets more and more negative $\frac{1}{x}$ gets closer and closer to 0.

then $\frac{1}{x}$ gets more and more negative.

Example: Graph $y = \frac{1}{x}$.



The graph of $y = \frac{1}{x}$

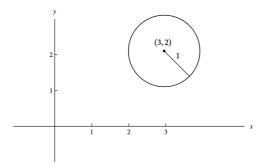
Asymptotes:

 $\begin{array}{ll} y=0 & (\text{the } x \text{ axis}) \text{ is an asymptote to } y=\frac{1}{x} \text{ as } x \to +\infty \\ y=0 & (\text{the } x \text{ axis}) \text{ is an asymptote to } y=\frac{1}{x} \text{ as } x \to -\infty \\ x=0 & (\text{the } y \text{ axis}) \text{ is an asymptote to } y=\frac{1}{x} \text{ as } x \to 0^+ \\ x=0 & (\text{the } y \text{ axis}) \text{ is an asymptote to } y=\frac{1}{x} \text{ as } x \to 0^-. \end{array}$

6.8 Graphing: Shifting, scaling and flipping

6.8.1 Shifting

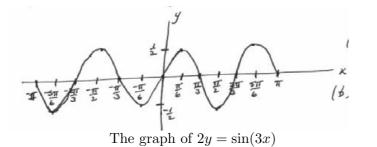
Example: Graph $(x - 3)^2 + (y - 2)^2 = 1$.



A circle of radius 1 and center (3, 2)

6.8.2 Scaling

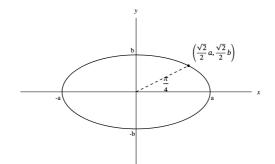
Example:. Graph $2y = \sin 3x$.



- To graph $(x-3)^2 + (y-2)^2 = 1$: (a) $x^2 + y^2 = 1$ is a basic circle of radius 1. (b) The center is shifted by 3 to the right in the x-direction,
 - 2 upwards in the y-direction.

- To graph $2y = \sin(3x)$:
- (a) $y = \sin x$ is the basic graph.
- (b) The x-axis is scaled (squished) by 3.
- (c) The y-axis is scaled by 2.

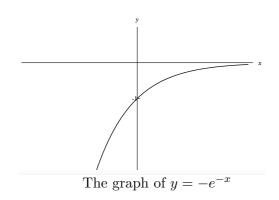
Example: Let $a, b \in \mathbb{R}_{>0}$. Graph $\frac{1}{a^2}x^2 + \frac{1}{b^2}y^2 = 1$.



An ellipse with width 2a and height 2b

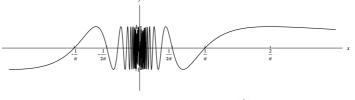
6.8.3 Flipping

Example: Graph $y = -e^{-x}$.



To graph $y = -e^{-x}$: (a) $y = e^x$ is the basic graph. (b) $y = -e^{-x}$ is the same as $-y = e^{-x}$. (c) The x-axis is flipped (around x = 0). (d) The y-axis is flipped (around y = 0).

Example: Graph $y = \sin\left(\frac{1}{x}\right)$.



The graph of $y = \sin\left(\frac{1}{x}\right)$

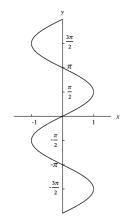
To graph $y = \sin\left(\frac{1}{x}\right)$:

(a) $y = \sin x$ is the basic graph.

(b) The positive x axis is flipped (around x = 1).

- (c) The negative x axis is flipped (around x = -1).
- (d) As $x \to \infty$ then $\sin\left(\frac{1}{x}\right) = 0^+$.
- (e) As $x \to -\infty$ then $\sin\left(\frac{1}{x}\right) = 0^-$.
- (f) As $x \to 0^+$ then $\sin\left(\frac{1}{x}\right)$ oscillates between +1 and -1.

Example: Graph $y = \arcsin x$.



To graph $y = \arcsin x$: (a) $y = \sin x$ is the basic graph. (b) $y = \arcsin, x$ is the same as $\sin y = x$. So the x and y axis are switched from $y = \sin x$. So the graph of $y = \sin x$ is flipped across the line x = y.

The graph of $y = \arcsin x$