5 exponentials, derivatives and integrals

5.1 The number system $\mathbb{Q}[[x]]$, the exponential and the logarithm

The number system $\mathbb{Q}[x]$ is the collection of polynomials in a variable x with coefficients that are rational numbers. Addition, multiplication and scalar multiplication are operations with polynomials.

If $r \in \mathbb{Z}_{>0}$ then $(1-x)(1+x+x^2+\cdots+x^{r-1}) = 1-x^r$ and

$$\frac{1-x^r}{1-x} = 1 + x + x^2 + \dots + x^{r-1}, \qquad \text{in the number system } \mathbb{Q}[x].$$

The number system $\mathbb{Q}[[x]]$ is the collection of, possibly infinite, polynomials. Favorite elements of $\mathbb{Q}[[x]]$ are

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots, \qquad \log(1-x) = -(x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots),$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \dots, \qquad \log(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots,$$

$$e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots,$$

The number e^x in the number system $\mathbb{Q}[[x]]$ is the most important number in mathematics:

 e^x is the most important number in mathematics.

The derivative with respect to x is the function $\frac{d}{dx}: \mathbb{Q}[[x]] \to \mathbb{Q}[[x]]$ determined by

$$\frac{dx}{dx} = 1, \qquad \frac{d(c_1f + c_2g)}{dx} = c_1\frac{df}{dx} + c_2\frac{dg}{dx}, \qquad \frac{d(fg)}{dx} = f\frac{dg}{dx} + \frac{df}{dx}g,$$

for $c_1, c_2 \in \mathbb{Q}$ and $f, g \in \mathbb{Q}[[x]]$.

HW: Prove, by induction on r, that if $r \in \mathbb{Z}_{\geq 0}$ then $\frac{dx^r}{dx} = rx^{r-1}$. **HW:** Take derivatives with respect to x and check that

$$\frac{de^x}{dx} = e^x, \qquad \frac{d\log(1-x)}{dx} = \frac{1}{1-x}, \qquad \frac{d\log(1+x)}{dx} = \frac{1}{1+x}.$$

HW: Show that

if
$$xy = yx$$
 then $e^{x+y} = e^x e^y$.

HW: Show that

$$e^{0} = 1, \qquad e^{-x} = \frac{1}{e^{x}} \qquad \text{and} \qquad \frac{de^{x}}{dx} = e^{x}.$$

HW: Show that e^x is characterized by the conditions $\frac{de^x}{dx} = e^x$ and $e^0 = 1$. **HW:** Show that if $f(x) \in \mathbb{Q}[[x]]$ satisfies f(x+y) = f(x) + f(y) then

there exists $a \in \mathbb{Q}$ such that $f(x) = e^{ax}$.

HW: Show that $e^{\log(1+x)} = 1 + x$. **HW:** Show that $\log(e^x) = x$.

5.2 Hyperbolic functions

The hyperbolic functions $\sinh x$ and $\cosh x$ are given by

$$\sinh(x) = \frac{1}{2}(e^x - e^{-x})$$
 and $\cosh(x) = \frac{1}{2}(e^x + e^{-x}).$

Define

$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \operatorname{coth} x = \frac{1}{\tanh x}, \quad \operatorname{sech} x = \frac{1}{\cosh x}, \quad \operatorname{csch} x = \frac{1}{\sinh x}$$

 $\operatorname{\mathbf{HW:}}$ Show that

 $\sinh(x) = x + \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + \cdots$ and $\cosh(x) = 1 + \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \cdots$ **HW:** Show that $e^x = \cosh x + \sinh x$ and $e^{-x} = \cosh x - \sinh x$.

5.3 Circular functions

Let $i \in \mathbb{C}$ be such that $i^2 = -1$. The *circular functions* $\sin x$ and $\cos x$ are given by

$$\cos(x) = \frac{1}{2}(e^{ix} + e^{-ix})$$
 and $\sin(x) = (-i)\frac{1}{2}(e^{ix} - e^{-ix}).$

Define

$$\tan(x) = \frac{\sin(x)}{\cos(x)}, \qquad \cot(x) = \frac{\cos(x)}{\sin(x)}, \qquad \sec(x) = \frac{1}{\cos(x)}, \qquad \csc(x) = \frac{1}{\sin(x)}$$

HW: Show that

$$\cos(x) = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \cdots$$
 and $\sin(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \cdots$
HW: Show that $e^{ix} = \cos(x) + i\sin(x)$ and $e^{-ix} = \cos(x) - i\sin(x)$.

sines and cosines of the favorite angles

For $a, \theta \in \mathbb{R}$, let $r = e^a$ and $x = r\cos(\theta)$ and $y = r\sin(\theta)$. Then $z = e^{a+i\theta} = e^a e^{i\theta} = re^{i\theta} = r(\cos\theta + i\sin\theta) = (r\cos\theta) + i(r\sin\theta) = x + iy.$

5.4 Inverse "functions"

 \sqrt{x} is the "function" that undoes x^2 . This means that

$$\sqrt{x^2} = x$$
 and $(\sqrt{x})^2 = x$.

 $\log x$ is the "function" that undoes e^x . This means that

 $\log(e^x) = x$ and $e^{\log x} = x$.

 $\int dx$ is the "function" that undoes $\frac{d}{dx}$. This means that

$$\int \frac{df}{dx}dx = f$$
 and $\frac{d}{dx}\left(\int fdx\right) = f.$

 $\arcsin x$ is the "function" that undoes $\sin x$. This means that

$$\arcsin(\sin x) = x$$
 and $\sin(\arcsin x) = x$.

 $\arccos x$ is the "function" that undoes $\cos x$. This means that

$$\arccos(\cos x) = x$$
 and $\cos(\arccos x) = x$

 $\arctan x$ is the "function" that undoes $\tan x$. This means that

$$\arctan(\tan x) = x$$
 and $\tan(\arctan x) = x$.

 $\operatorname{arccot} x$ is the "function" that undoes $\operatorname{cot} x$. This means that

$$\operatorname{arccot}(\operatorname{cot} x) = x$$
 and $\operatorname{cot}(\operatorname{arccot} x) = x$.

 $\operatorname{arcsec} x$ is the "function" that undoes $\operatorname{sec} x$. This means that

$$\operatorname{arcsec}(\operatorname{sec} x) = x$$
 and $\operatorname{sec}(\operatorname{arcsec} x) = x$.

 $\operatorname{arccsc} x$ is the "function" that undoes $\operatorname{csc} x$. This means that

$$\operatorname{arccsc}(\operatorname{csc} x) = x$$
 and $\operatorname{csc}(\operatorname{arccsc} x) = x$

 $\log_a x$ is the "function" that undoes a^x . This means that

 $\log_a(a^{\sqrt{7}\pi i\sin 32}) = \sqrt{7}\pi i\sin 32$ and $a^{\log_a(\sqrt{7}\pi i\sin 32)} = \sqrt{7}\pi i\sin 32$.

WARNING: In spite of the name, an inverse "function" is rarely a function. The output of an inverse function is usually a set of values, as opposed to a single value. For example

 $\sqrt{9} = \{3, -3\}$ since $3^2 = 9$ and $(-3)^2 = 9$.

Similarly,

$$\log(1) = \{0 + k2i\pi \mid k \in \mathbb{Z}\}, \quad \text{since} \quad e^{0+k2i\pi} = (e^{i2\pi})^k = 1^k = 1.$$

and

$$\int 2x dx = \{x^2 + c \mid c \text{ is a constant}\}, \qquad \text{since} \quad \frac{d(x^2 + c)}{dx} = \frac{dx^2}{dx} + \frac{dc}{dx} = 2x + 0 = 2x$$

when c is a constant.