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1 Introduction

In 2024 I decided to start my third act.
First, I read a biography of Pauline Viardot Garcia, a great opera star, a great teacher, an inspiring

person, of the 1800’s. Her husband Louis Viardot translated the classic Spanish novel: Don Quijote
de La Mancha, by Miguel de Cervantes Saavedra. I decided I should read Viardot’s translation and
compare it to the original Spanish to see for myself whether Louis’ translation is any good. I rarely
trust the critics without making an assessment for myself. Of course, my French is better than my
Spanish, so it will take me some analysis and thought to produce a critical analysis of the quality of
L’s translation.

I was discussing my plans with my friend Persi Diaconis and he told me that his concept of Don
Quixote is coloured by a Broadway performance of Man of La Mancha from the late 60’s. In this time
that we live in, in 2024, I soon found a video of the Broadway production on YouTube. This book
was compiled while watching this wonderful video.

This is the Math Book. To dream the impossible dream, I hope you enjoy this book and fall in love
with the beautiful mathematics that it is based on. Explanations of things in this book that might
not seem immediately obvious can be found in the sequel to this book, which is entitled ‘The Math
Book – the proof’. Perhaps the sequel will justify the initial escapade.

If, by chance, this author does not complete the sequel, I hope that others will. It is the proof
that completes the quest.

A ‘fun’ part (at least for the author) of this text is Section 7, entitled ‘Some fun lectures’. I hope
that at least some readers will read Section 7.6 first. I hope that all readers will feel free to skip
around to any part of the book that looks interesting or useful at any given moment. This text is not
designed to be read like a novel by starting at page 1 and then reading page 2 and then reading page
3 and then page 4 and then page 5 and then page 6 and then page 7 and then page 8 and then page
9 and then page 10 and then page 11 and then page 12 and then page 13 and then page 14 and then
page 15 and then page 16 and then page 17 and then page 18 and then page 19 and then page 20 and
then page 21 and then page 22 and then page 23 and then page 24 and then page 25 and then page
26 and then page 27 and then page 28 and then page 29 and then page 30 and then page 31 and then
page 32 and then page 33 and then page 34 and then page 35 and then page 36 and then page 37 and
then page 38 and then page 39 and then page 40 and then page 41 and then page 42 and then page
43 and then page 44 and then page 45 and then page 46 and then page 47 and then page 48 and then
page 49 and then page 50 and then page 51 and then page 52 and then page 53 and then page 54 and
then page 55 and then page 56 and then page 57 and then page 58 and then page 59 and then page
60 and then page 61 and then page 62 and then page 63 and then page 64 and then page 65 and then
page 66 and then page 67 and then page 68 and then page 69 and then page 70 and then page 71 and
then page 72 and then page 73 and then page 74 and then page 75 and then page 76 and then page
77 and then page 78 and then page 79 and then page 80 and then page 81 and then page 82 and then
page 83 and then page 84 and then page 85 and then page 86 and then page 87 and then page 88 and
then page 89 and then page 90. I think it’s more fun, and more instructive, to be more original than
that.

4
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2 exponentials, derivatives and integrals

2.1 The number system Q[[x]], the exponential and the logarithm

The number system Q[x] is the collection of polynomials in a variable x with coefficients that are
rational numbers. Addition, multiplication and scalar multiplication are operations with polynomials.

If r ∈ Z>0 then (1− x)(1 + x+ x2 + · · ·+ xr−1) = 1− xr and

1− xr

1− x
= 1 + x+ x2 + · · ·+ xr−1, in the number system Q[x].

The number system Q[[x]] is the collection of, possibly infinite, polynomials.
Favorite elements of Q[[x]] are

1

1− x
= 1 + x+ x2 + x3 + x4 + · · · , log(1− x) = −(x+ 1

2x
2 + 1

3x
3 + · · · ),

1

1 + x
= 1− x+ x2 − x3 + x4 − · · · , log(1 + x) = x− 1

2x
2 + 1

3x
3 − 1

4x
4 + · · · ,

ex = 1 + x+ 1
2!x

2 + 1
3!x

3 + · · · ,

The number ex in the number system Q[[x]] is the most important number in mathematics:

ex is the most important number in mathematics.

(Yes, this sentence is intentionally repeated and highlighted; it is a very important sentence.)

The derivative with respect to x is the function d
dx : Q[[x]]→ Q[[x]] determined by

dx

dx
= 1,

d(c1f + c2g)

dx
= c1

df

dx
+ c2

dg

dx
,

d(fg)

dx
= f

dg

dx
+

df

dx
g,

for c1, c2 ∈ Q and f, g ∈ Q[[x]].

HW: Prove, by induction on r, that if r ∈ Z≥0 then
dxr

dx
= rxr−1.

HW: Take derivatives with respect to x and check that

dex

dx
= ex,

d log(1− x)

dx
=

1

1− x
,

d log(1 + x)

dx
=

1

1 + x
.

HW: Show that
if xy = yx then ex+y = exey.

HW: Show that

e0 = 1, e−x =
1

ex
and

dex

dx
= ex.

HW: Show that ex is characterized by the conditions dex

dx = ex and e0 = 1.

HW: Show that if f(x) ∈ Q[[x]] satisfies f(x+ y) = f(x) + f(y) then

there exists a ∈ Q such that f(x) = eax.

HW: Show that elog(1+x) = 1 + x.

HW: Show that log(ex) = x.
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2.2 Hyperbolic functions

The hyperbolic functions sinhx and coshx are given by

sinh(x) = 1
2(e

x − e−x) and cosh(x) = 1
2(e

x + e−x).

Define

tanh(x) =
sinh(x)

cosh(x)
, coth(x) =

1

tanh(x)
, sech(x) =

1

cosh(x)
, csch(x) =

1

sinh(x)
.

HW: Show that

sinh(x) = x+ 1
3!x

3 + 1
5!x

5 + · · · and cosh(x) = 1 + 1
2!x

2 + 1
4!x

4 + · · · .

HW: Show that ex = cosh(x) + sinh(x) and e−x = cosh(x)− sinh(x).

2.3 Circular functions

Let i be such that i2 = −1. The circular functions sinx and cosx are given by

cos(x) = 1
2(e

ix + e−ix) and sin(x) = (−i)12(e
ix − e−ix).

Define

tan(x) =
sin(x)

cos(x)
, cot(x) =

cos(x)

sin(x)
, sec(x) =

1

cos(x)
, csc(x) =

1

sin(x)
.

HW: Show that

cos(x) = 1− 1
2!x

2 + 1
4!x

4 − · · · and sin(x) = x− 1
3!x

3 + 1
5!x

5 − · · · .

HW:. Show that eix = cos(x) + i sin(x) and e−ix = cos(x)− i sin(x).

sines and cosines of the favorite angles

For a, θ ∈ R, let r = ea and x = r cos(θ) and y = r sin(θ). Then

z = ea+iθ = eaeiθ = reiθ = r(cos θ + i sin θ) = (r cos θ) + i(r sin θ) = x+ iy.
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2.4 Inverse “functions”

This is a single page to exposit inverse “functions”. The most important point is “undoes” and this
is repeated several time on this page for emphasis. The other most important point is that an inverse
“function” is often not a function.

√
x is the “function” that undoes x2. This means that

√
x2 = x and (

√
x)2 = x.

log x is the “function” that undoes ex. This means that

log(ex) = x and elog x = x.∫
dx is the “function” that undoes d

dx . This means that∫
df

dx
dx = f and

d

dx

(∫
fdx

)
= f.

arcsinx is the “function” that undoes sinx. This means that

arcsin(sinx) = x and sin(arcsinx) = x.

arccosx is the “function” that undoes cosx. This means that

arccos(cosx) = x and cos(arccosx) = x.

arctanx is the “function” that undoes tanx. This means that

arctan(tanx) = x and tan(arctanx) = x.

arccotx is the “function” that undoes cotx. This means that

arccot(cotx) = x and cot(arccotx) = x.

arcsecx is the “function” that undoes secx. This means that

arcsec(secx) = x and sec(arcsecx) = x.

arccscx is the “function” that undoes cscx. This means that

arccsc(cscx) = x and csc(arccscx) = x.

loga x is the “function” that undoes ax. This means that

loga(a
√
7πi sin 32) =

√
7πi sin 32 and aloga(

√
7πi sin 32) =

√
7πi sin 32.

WARNING: In spite of the name, an inverse “function” is rarely a function. The output of an
inverse function is usually a set of values, as opposed to a single value. For example

√
9 = {3,−3} since 32 = 9 and (−3)2 = 9.

Similarly,
log(1) = {0 + k2iπ | k ∈ Z}, since e0+k2iπ = (ei2π)k = 1k = 1.

and ∫
2xdx = {x2 + c | c is a constant}, since

d(x2 + c)

dx
=

dx2

dx
+

dc

dx
= 2x+ 0 = 2x

when c is a constant.
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2.5 Derivatives and integrals

This is a single page to cover derivatives and integrals. The reader may treat the Theorems as HW
questions. The notation “Theorem” indicates that this HW question is often useful for doing other
HW questions.

2.5.1 Derivatives

Let C((x)) = {a(x)b(x) | a(x), b(x) ∈ C[[x]] and b(x) ̸= 0} with a
b = c

d if ad = bc. The derivative with

respect to x on C((x)) is the function d
dx : C((x))→ C((x)) such that

d(f + g)

dx
=

df

dx
+

dg

dx
,

d(cf)

dx
= c

df

dx
,

d(fg)

dx
= f

dg

dx
+

df

dx
g and

dx

dx
= 1,

for f, g ∈ C((x)) and c ∈ C and where x denotes the identity function id: R→ R.

Theorem 2.1. (Chain rule and power formula)

d(f ◦ g)
dx

=
df

dg

dg

dx
and

d(fg)

dx
= fg

( g
f

df

dx
+ log f

dg

dx

)
.

Theorem 2.2. If n ∈ Z≥0 then

dxn

dx
= nxn−1 and

d ex

dx
= ex.

Theorem 2.3. If a ∈ C then

d xa

dx
= axa−1,

d log x

dx
=

1

x
,

d sinx

dx
= cosx,

d cosx

dx
= − sinx.

2.5.2 Integrals

The integral is backwards of the derivative, so that∫
df

dx
dx = f. (intdef)

The product rule for derivatives gives the formula for integration by parts:∫
u
dv

dx
dx = uv −

∫
v
du

dx
dx

(
The product rule is

d(uv)

dx
= u

dv

dx
+ v

du

dx
.
)

(IPR)

The chain rule for derivatives gives the formula for substitution:∫
udv =

∫
u
dv

dx
dx

(
The chain rule is

d(f ◦ v)
dx

=
df

dv

dv

dx
.
)

(ICR)

(get this by replacing u = df
dv in the left side and the right side of

∫ df
dvdv = f =

∫ df
dxdx =

∫ df
dv

dv
dxdx).

Remark 2.4. A more accurate expression for the integral is that the output of the integral is a set,∫
df

dx
dx =

{
f + c | dc

dx
= 0
}
, since

d(f + c)

dx
=

df

dx
+

dc

dx
=

df

dx
+ 0 =

df

dx

when dc
dx = 0. Alternatively, write∫

df

dx
dx = f + C, where C =

{
c | dc

dx
= 0
}

(the set C is the kernel of d
dx).
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3 Graphing

3d-space is R3 = {|u1, u2, u3⟩ | u1, u2, u3 ∈ R} and 1d-space is R1 = R = {|u1⟩ | u1 ∈ R}. (This
notation follows the historical framework of Descartes and Dirac.)

3.1 Parallelipipeds

Let u1, u2, u3, v1, v2, v3 ∈ R. Define

det(u1) = u1, det

(
v1 v2
w1 w2

)
= v1w2 − w1v2

and

det

u1 u2 u3
v1 v2 v3
w1 w2 w3

 = u1(v2w3 − v3w2)− u2(v1w3 − v3w1) + u3(v1w2 − v2w1).

Proposition 3.1. (Lengths of segments in R) Let P be the segment with vertices |0⟩ and |u1⟩. Then

(Length of segment P ) =
∣∣det (u1)∣∣ . (lengthdetB)

(Areas of parallelograms in R2) Let P be the parallelogram with vertices |0, 0⟩, |v1, v2⟩, |w1, w2⟩ and
|v1 + w1, v2 + w2⟩. Then

(Area of P ) =

∣∣∣∣det(v1 v2
w1 w2

)∣∣∣∣ . (areadetB)

(Volumes of parallelipipeds R3) Let P be the parallelipiped with vertices |0, 0, 0⟩, (u1, u2, u3⟩, |v1, v2, v3⟩,
|w1, w2, w3⟩, |u1 + v1, u2 + v2, u3 + v3⟩, |u1 + w1, u2 + w2, u3 + w3⟩, |v1 + w1, v2 + w2, v3 + w3⟩ and
|u1 + v1 + w1, u2 + v2 + w2, u3 + v3 + w3⟩. Then

(Volume of parallelipiped P ) =

∣∣∣∣∣∣det
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ . (volumedetB)

Let u = |u1, u2, u3⟩, v = |v1, v2, v3⟩, w = |w1, w2, w3⟩ in R3. The cross product of v and w is

v × w = | v2w3 − v3w2,−(v1w3 − v3w1), v1w2 − v2w1 ⟩ in R3.

The inner product of u and v is

⟨u | v⟩ = u1v1 + u2v2 + u3v3 and ∥u∥ =
√

u21 + u22 + u23

is the length of u and the angle between v and w is θ(v, w) ∈ R[0,π] given by

cos(θ(v, w)) =
⟨v | w⟩
∥v∥ · ∥w∥

.

Proposition 3.2. Let u = |u1, u2, u3⟩, v = |v1, v2, v3⟩, w = |w1, w2, w3⟩ in R3 and let θ(v, w) be the
angle between v and w. Then

⟨u|v × w⟩ = det

u1 u2 u3
v1 v2 v3
w1 w2 w3

 , ∥v × w∥ = ∥v∥ · ∥w∥ sin(θ(v, w)), (crosslengthB)

and n̂ =
1

∥v × w∥
v × w is a unit vector orthogonal to v and w.

9
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3.2 Circles

3.2.1 distances, the Pythagorean theorem and the equation of the basic circle

For the moment call it r.

Then

Area of the outer square = Area of the inner square + Area of 4 triangles
(p+ q)2 = r2 + 4 · 12pq.

Solve for r.

r2 = (p+ q)2 − 4 · 12pq
= p2 + 2pq + q2 − 2pq = p2 + q2.

So

r2 = p2 + q2 and r =
√
p2 + q2

This is the heavily used Pythagorean theorem. So what is the equation of the basic circle?√
x2 + y2 = 1 is all points (x, y) that are distance 1 from the origin.

All points that are distance 1 from the origin

The basic circle x2 + y2 = 1

10
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3.2.2 angles, arc lengths, cosine, sine and the circumference of a circle

π is the distance halfway around a circle of radius 1

Measure angles according to the distance traveled on a circle of radius 1.

the angle θ is measured by traveling
a distance θ on a circle of radius 1

The cosine and sine are the x and y coordinates of the point at angle θ on a circle of radius 1,

cos(θ) = (x-coordinate of point at angle θ on a circle of radius 1),

sin(θ) = (y-coordinate of point at angle θ on a circle of radius 1).

HW: A priori, the functions cos : R → R[−1,1] and sin: R → R[−1,1] have nothing to do with the
expressions cos(x) and sin(x) in Q[[x]] defined in Section 2.3. Make a precise connection and justify
it carefully and thoroughly.

3.2.3 Favorite angles

sines and cosines of the favorite angles

11



Algebra, Graphing, Numbers,Sets notes, Arun Ram February 3, 2025

3.2.4 Circumference of a circle

Start with a circle of radius 1.

the angle θ is measured by traveling
a distance θ on a circle of radius 1

Stretch both x-axis and the y-axis to get a circle of radius r.

The distance θ stretches to rθ

The distance 2π around a circle of radius 1 stretches to 2πr around a circle of radius r.

So the circumference of a circle of radius r is 2πr.

3.2.5 Area of a circle

To find the area of a circle first approximate with a polygon inscribed in the circle. The eight triangles
form an octagon P8 in the circle. The area of the octagon is almost the same as the area of the circle.
Unwrap the octagon.

The area of the octagon is the area of the 8 triangles. The area of each tringle is 1
2bh. So the area of

the octagon is 1
2Bh, where B = 8b.

Teke the limit as the number of triangles in the interior polygon gets larger and larger (the polygon
gets closer and closer to being the circle). If the base of each triangle is b and B = nb then

Area of the circle = lim
n→∞

(area of the n-sided polygon Pn) = lim
n→∞

(
n1
2bh
)

= lim
n→∞

(
1
2Bh

)
= 1

2

(
lim
n→∞

B
)
· h = 1

2 · 2πr · r = πr2,

where B is the total base, h is the height of the triangle and 2πr is the length of an unwrapped circle,
and r is the radius of the circle.

So the area of a circle of radius r is πr2.

12
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3.3 basic graphs

3.3.1 The basic line y = x

The line y = x the line y = −x

3.3.2 The basic parabola y = x2

The parabola y = x2 the parabola y2 = x

3.3.3 The basic circle x2 + y2 = 1

All points in R2 that are distance 1 from the origin.

The circle x2 + y2 = 1

3.3.4 The basic hyperbola x2 − y2 = 1

The hyperbola x2 − y2 = 1

See Section 3.5 for notes on how to derive the graph of the basic hyperbola x2 − y2 = 1.

13
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3.4 Graphing: Shifting, scaling and flipping

3.4.1 Shifting

Example:. Graph {(x, y) ∈ R2 | (x− 3)2 + (y − 2)2 = 1}.

To graph (x− 3)2 + (y − 2)2 = 1:
(a) x2 + y2 = 1 is a basic circle of radius 1.
(b) The center is shifted by

3 to the right in the x-direction,
2 upwards in the y-diection.

A circle of radius 1 and center (3, 2)

3.4.2 Scaling

Example:. Graph {(x, y) ∈ R2 | 2y = sin(3x)}.

To graph 2y = sin(3x):
(a) y = sinx is the basic graph.
(b) The x-axis is scaled (squished) by 3.
(c) The y-axis is scaled by 2.

Real solutions of 2y = sin(3x)

Example: Let a, b ∈ R>0. Graph {(x, y) ∈ R2 | 1
a2
x2 + 1

b2
y2 = 1}.

An ellipse with width 2a and height 2b

14
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3.4.3 Flipping

Example:. Graph {(x, y) ∈ R2 | y = −e−x}.

To graph solutions of y = −e−x:
(a) y = ex is the basic graph.
(b) y = −e−x is the same as −y = e−x.
(c) The x-axis is flipped (around x = 0).
(d) The y-axis is flipped (around y = 0).

Real solutions of y = −e−x

Example:. Graph {(x, y) ∈ R2 | y = sin
(
1
x

)
}.

Real solutions of y = sin
(
1
x

)
To graph solutions of y = sin

(
1
x

)
:

(a) y = sinx is the basic graph.

(b) The positive x axis is flipped (around x = 1).

(c) The negative x axis is flipped (around x = −1).
(d) As x→∞ then sin

(
1
x

)
is positive and gets close to 0.

(e) As x→ −∞ then sin
(
1
x

)
is negative and gets close to 0.

(f) If x is positive and gets close to 0 then sin
(
1
x

)
oscillates between +1 and −1.

Example:. Graph {(x, y) ∈ R2 | y = arcsin(x)}.

To graph solutions y = arcsin(x):
(a) The graph of solutions of y = sin(x) is the basic graph.
(b) y = arcsin(x) is the same as sin(y) = x.

So the x and y axis are switched from y = sin(x).
So the graph for y = sin(x) is flipped across the line x = y.

Real solutions of y = arcsin(x)

15
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3.5 Asymptotes

A asymptote of a graph y = f(x) as x → a is another graph y = g(x) that the original graph
y = f(x) gets closer and closer to as x gets closer and closer to a.

Example: Graph the basic hyperbola x2 − y2 = 1.

The hyperbola x2 − y2 = 1

Graphing notes:

(a) If y = 0 then x2 = 1. So x = ±1.

(b) If x = 0 then −y2 = 1 which is impossible for y ∈ R.

(c) The equation is 1−
( y
x

)2
=
(
1
x

)2
.

If x gets very big then 1
x gets closer and closer to 0 and the equation gets closer and closer to

1−
( y
x

)2
= 0. This is the same as

( y
x

)2
= 1, which is the same as y

x = ±1, i.e. y = ±x. So, as x gets
very large the equation gets closer and closer to y = x and y = −x. As x gets very negative the basic
hyperbola gets closer and closer to y = x and y = −x.
Asymptotes:

y = x is an asymptote of the basic hyperbola as x→ +∞;
y = −x is an asymptote of the basic hyperbola as x→ +∞;
y = x is an asymptote of the basic hyperbola as x→ −∞;
y = −x is an asymptote of the basic hyperbola as x→ −∞.

Example: Graph {(x, y) ∈ R2 | y = 1
x}.

(a) As x gets large 1
x gets closer and closeer to 0.

(b) As x gets closer to 0 (from the positive side)
then 1

x gets larger and larger.
(c) As x gets closer to 0 (from the negative side)
then 1

x gets more and more negative.
(d) As x gets more and more negative 1

x gets closer and closer to 0.
(e) If x = 1 then y = 1.
(f) If x = −1 then y = −1.

Real solutions of y = 1
x

Asymptotes:
y = 0 (the x axis) is an asymptote to y = 1

x as x→ +∞;
y = 0 (the x axis) is an asymptote to y = 1

x as x→ −∞;
x = 0 (the y axis) is an asymptote to y = 1

x as x→ 0+;
x = 0 (the y axis) is an asymptote to y = 1

x as x→ 0−.

16



Algebra, Graphing, Numbers,Sets notes, Arun Ram February 3, 2025

3.6 continuity and differentiablility – jumps and slopes

Let a ∈ R. A function f : R→ R is continuous at a if

lim
x→a

f(x) = f(a).

In other words, a function f : R→ R is continuous at a if the graph of f doesn’t jump at x = a.

f : R→ R is not continuous at a

Think about
df

dx

]
x=a

= lim
h→0

f(a+ h)− f(a)

h

in terms of the graph

The slope of f(x) at x = a

f(a+∆x)− f(a)

∆x
=

change in f

change in x

=
rise

run
= slope of line connecting (a, f(a)) and (a+∆x, f(a+∆x)).

This gives that

lim
∆x→0

f(a+∆x)− f(a)

∆x
= (slope of f at the point x = a).

A function is differentiable at x = a if the slope of graph of f(x) at x = a exists.

17
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3.7 increasing, decreasing, concave up and concave down

A function f(x) is increasing at x = a if it is going up at x = a,
i.e., a function f(x) is increasing at x = a if f(a+∆x) > f(a) for all small ∆x > 0,
i.e., a function f(x) is increasing at x = a if the slope of f(x) at x = a is positive,

i.e., a function f(x) is increasing at x = a if
df

dx

]
x=a

> 0.

A function f(x) is decreasing at x = a if it is going up at x = a,
i.e., a function f(x) is decreasing at x = a if f(a+∆x) < f(x) for all small ∆x < 0,
i.e., a function f(x) is decreasing at x = a if the slope of f(x) at x = a is negative,

i.e., a function f(x) is decreasing at x = a if
df

dx

]
x=a

< 0.

Increasing at x = a Decreasing at x = a

A function f(x) is concave up at x = a if it is right side up bowl shaped at x = a,
i.e., a function f(x) is concave up at x = a if the slope of f is getting larger at x = a,

i.e., a function f(x) is concave up at x = a if
df

dx
is increasing at x = a,

i.e., a function f(x) is concave up at x = a if
d2f

dx2
]
x=a

> 0

A function f(x) is concave down at x = a if it is up side down bowl shaped at x = a,
i.e., a function f(x) is concave down at x = a if the slope of f is getting smaller at x = a,

i.e., a function f(x) is concave down at x = a if
df

dx
is decreasing at x = a,

i.e., a function f(x) is concave down at x = a if
d2f

dx2
]
x=a

< 0

A point of inflection is a point where f changes from concave up to concave down, or from concave
down to concave up.

Concave up, concave down and points of inflection

18
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3.8 local maxima and minima

A local maximum is a point x = a where f(a) is bigger than the f(x) around it.

A local minimum is a point x = a where f(a) is smaller than the f(x) around it
i.e., f(a) < f(a+∆x) for small ∆x.

Local maximums and mniimums

Where can a maximum or minimum occur?

(a) A point x = a where f(x) is differentiable and
df

dx

]
x=a

= 0.

A
df

dx

]
x=a

= 0 critical point

(b) A point x = a where f(x) is not continuous.

f(x) =

{
x2 + 1, if x ∈ R[0,1],

2− x, if x ∈ R>1.

A discontinuity critical point x = 1 is a minimum in this example.

(c) A point x = a on the boundary of where f(x) is defined.

f(x) =

{
x2 + 1, if x ∈ R[0,1],

2− x, if x ∈ R>1.

A boundary critical point x = 0 is a minimum in this example.
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3.9 Relating limits and derivatives and relating limits and integrals

If
df

dx
= g

then define
df

dx

]
x=a

= g(a) and
(∫

g dx
)]x=b

x=a
= f(b)− f(a).

The fundamental theorem of change.

df

dx

]
x=a

= lim
h→0

f(a+ h)− f(a)

h
.

Fundamental theorem of calculus.(∫
g dx

)]x=b

x=a
= lim

N→∞

(
g(a) 1

N + g(a+ 1
N ) 1

N + · · ·+ g(b− 1
N ) 1

N

)
.

3.10 The fundamental theorem of change

Think about
df

dx

]
x=a

= lim
h→0

f(a+ h)− f(a)

h
.

The core of what makes this equality true is that the weird limit on the right hand side satisfies the
product rule: Assume that

Df (a) = lim
h→0

f(a+ h)− f(a)

h
and Dg(a) = lim

h→0

g(a+ h)− g(a)

h

both exist. Then

Dfg

]
x=a

= Dfg(a) = lim
h→0

(fg)(a+ h)− (fg)(a)

h
= lim

h→0

f(a+ h)g(a+ h)− f(a)g(a)

h

= lim
h→0

(f(a+ h)− f(a))(g(a+ h)− g(a) + f(a+ h)g(a) + f(a)g(a+ h)− 2f(a)g(a)

h

= lim
h→0

(
h
f(a+ h)− f(a)

h

g(a+ h)− g(a)

h
+

(f(a+ h)− f(a))g(a)

h
+

f(a)(g(a+ h)− g(a)

h

=
(
lim
h→0

h
)(

lim
h→0

f(a+ h)− f(a)

h

)(
lim
h→0

g(a+ h)− g(a)

h

)
+
(
lim
h→0

(f(a+ h)− f(a))

h
g(a)

)
+
(
lim
h→0

f(a)
(g(a+ h)− g(a)

h

)
= 0 ·Df (a)Df (b) +Df (a)g(a) + f(a)Dg(a)

= 0 +Df (a)g(a) + f(a)Dg(a)

= Df (a)g(a) + f(a)Dg(a)

=
(
Dfg + fDg

)]
x=a

(
The product rule is

d(fg)

dx
=

df

dx
g + f

dg

dx
.
)
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3.11 The fundamental theorem of calculus: interpreting the limit via areas

If
df

dx
= g

then define
df

dx

]
x=a

= g(a) and
(∫

g dx
)]x=b

x=a
= f(b)− f(a).

Fundamental theorem of change.

df

dx

]
x=a

= lim
h→0

f(a+ h)− f(a)

h
.

Fundamental theorem of calculus.(∫
g dx

)]x=b

x=a
= lim

N→∞

(
g(a) 1

N + g(a+ 1
N ) 1

N + · · ·+ g(b− 1
N ) 1

N

)
.

The right hand side

lim
N→∞

(
g(a) 1

N + g(a+ 1
N ) 1

N + · · ·+ g(b− 1
N ) 1

N

)
= lim

N→∞
(add up the areas of the little boxes of width ∆x = 1

N and height g(a+ k 1
N ))

g(a+∆x)

little box

How little boxes are used to calculate an integral

The leftmost box has area g(a)∆x = g(a) 1
N .

The second box has area g(a+∆x)∆x = g(a+ 1
N ) 1

N .

Continue this process.

So think of lim
N→∞

(
g(a) 1

N + g(a+ 1
N ) 1

N + · · ·+ g(b− 1
N ) 1

N

)
as adding up areas from a to b of infinites-

imally small boxes with area g(x)∆x.
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3.12 Why the fundamental theorem of calculus works

The fundamental theorem of calculus says that

(Area under g(x) from a to b) = A(b)−A(a), where

∫
g(x)dx = A(x) + c.

Why does this work?

Let A(x) = (area under g(x) from a to x).

Area under g(x) from a to b

Difference in area is the last little box

Then

dA

dx
= lim

∆x→0

A(x)−∆x−A(x)

∆x

= lim
∆x→0

area of last little box

∆x

= lim
∆x→0

g(x)∆x

∆x

= g(x).

So

A(b)−A(a) = (area under g(x) from a to b)− (area under g(x) from a to a)

= (area under g(x) from a to b).
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4 Sets and functions

4.1 Sets

A set is a collection of objects which are called elements.

Write
s ∈ S if s is an element of the set S.

• The empty set ∅ is the set with no elements.

• A subset T of a set S is a set T such that if t ∈ T then t ∈ S.

Write

T ⊆ S if T is a subset of S, and

T = S if the set T is equal to the set S.

More precisely, T = S if T ⊆ S and S ⊆ T .

Let S and T be sets.

• The union of S and T is the set S ∪ T of all u such that u ∈ S or u ∈ T ,

S ∪ T = {u | u ∈ S or u ∈ T}.

• The intersection of S and T is the set S ∪ T of all u such that u ∈ S and u ∈ T ,

S ∩ T = {u | u ∈ S and u ∈ T}.

• The product S and T is the set S × T of all ordered pairs (s, t) where s ∈ S and t ∈ T ,

S × T = {(s, t) | s ∈ S and t ∈ T}.

The sets S and T are disjoint if S ∩ T = ∅.
The set S is a proper subset of T if S ⊆ T and S ̸= T . Write

S ⊊ T if S is a proper subset of T .

S T S T

The red (and purple) region is S
The blue (and purple) region is T

the purple region is S ∩ T
the green region is S ∪ T
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4.2 Functions

Functions are for comparing sets.

Let S and T be sets. A function from S to T is a subset Γf ⊆ S × T such that

if s ∈ S then there exists a unique t ∈ T such that (s, t) ∈ Γf .

Write
Γf = {(s, f(s)) | s ∈ S}

so that the function Γf can be expressed as

an “assignment”
f : S → T

s 7→ f(s)

which must satisfy

(a) If s ∈ S then f(s) ∈ T , and

(b) If s1, s2 ∈ S and s1 = s2 then f(s1) = f(s2).

Let S and T be sets.

• Two functions f : S → T and g : S → T are equal if they satisfy

if s ∈ S then f(s) = g(s).

• A function f : S → T is injective if f satisfies the condition

if s1, s2 ∈ S and f(s1) = f(s2) then s1 = s2.

• A function f : S → T is surjective if f satisfies the condition

if t ∈ T then there exists s ∈ S such that f(s) = t.

• A function f : S → T is bijective if f is both injective and surjective.

Examples. It is useful to visualize a function f : S → T as a graph with edges (s, f(s)) connecting
elements s ∈ S and f(s) ∈ T . With this in mind the following are examples:

(a) a function (b) not a function (c) not a function

(d) an injective function (e) a surjective function (f) a bijective function

In these pictures the elements of the left column are the elements of the set S and the elements of the
right column are the elements of the set T . In order to be a function the graph must have exactly one
edge adjacent to each point in S. The function is injective if there is at most one edge adjacent to
each point in T . The function is surjective if there is at least one edge adjacent to each point in T .
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4.3 Composition of functions

Let f : S → T and g : T → U be functions. The composition of f and g is the function

g ◦ f given by
g ◦ f : S → U

s 7→ g(f(s))

Let S be a set. The identity map on S is the function given by

idS : S → S
s 7→ s

Let f : S → T be a function. The inverse function to f is a function

f−1 : T → S such that f ◦ f−1 = idT and f−1 ◦ f = idS .

Theorem 4.1. Let f : S → T be a function. An inverse function to f exists if and only if f is
bijective.

Representing functions as graphs, the identity function idS looks like

(a) the identity function idS

In the pictures below, if the left graph is a pictorial representation of a function f : S → T then the
inverse function to f , f−1 : T → S, is represented by the graph on the right; the graph for f−1 is the
mirror-image of the graph for f .

(b) the function f (c) the function f−1

Graph (d) below, represents a function g : S → T which is not bijective. The inverse function to g
does not exist in this case: the graph (e) of a possible candidate, is not the graph of a function.

(d) the function g (e) not a function
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4.4 Cardinality

Let S and T be sets. The sets S and T are isomorphic, or have the same cardinality

if there is a bijective function φ : S → T .

Write
Card(S) = Card(T ) if S and T have the same cardinality.

Notation: Let S be a set. Write

Card(S) =


0, if S = ∅,
n, if Card(S) = Card({1, 2, . . . , n}),
∞, otherwise.

Note that even in the cases where Card(S) =∞ and Card(T ) =∞ it may be that Card(S) ̸= Card(T ).

Let S be a set.

• The set S is finite if there exists n ∈ Z≥0 such that Card(S) = Card({1, . . . , n}).

• The set S is infinite if Card(S) is not finite.

• The set S is countable if Card(S) = Card(Z>0).

• The set S is uncountable if S is not countable.

Some authors define: ‘The set S is countable if Card(S) = Card(Z>0) or S is finite.’ The choice in
this book is that finite sets are finite and countable sets are not finite.

4.5 Images and fibers

Let f : S → T be a function. Let A ⊆ S and let B ⊆ T . The image of A is

f(A) = {f(a) | a ∈ A} and f−1(B) = {s ∈ S | f(s) ∈ B},

is the fiber over B. Let t ∈ T . The fiber over t is

f−1(t) = f−1({t}) = {s ∈ S | f(s) = t} and im(f) = f(S) = {f(s) | s ∈ S}

is the image of f .
Let S/(f) be the set of fibers of f ,

S(f) = {f−1(t) | t ∈ T}.

The elements of S(f) are, themselves, sets. Then

f̂ : Sf → im(f)
f−1(t) 7→ t,

p : S → Sf

s → f−1(f(s)),
ι : im(f) → T

f(s) → f(s)

define functions such that

(a) f̂ is bijective,
(b) p is surjective,
(c) ι is injective,

and f = ι ◦ f̂ ◦ p.
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4.6 Relations, equivalence relations and partitions

Let S be a set.

• A relation ∼ on S is a subset R∼ of S × S. Write s1 ∼ s2 if the pair (s1, s2) is in the subset R∼
so that

R∼ = {(s1, s2) ∈ S × S | s1 ∼ s2}.

• An equivalence relation on S is a relation ∼ on S such that

(a) if s ∈ S then s ∼ s,

(b) if s1, s2 ∈ S and s1 ∼ s2 then s2 ∼ s1,

(c) if s1, s2, s3 ∈ S and s1 ∼ s2 and s2 ∼ s3 then s1 ∼ s3.

Let ∼ be an equivalence relation on a set S and let s ∈ S. The equivalence class of s is the set

[s] = {t ∈ S | t ∼ s}.

A partition of a set S is a collection P of subsets of S such that

(a) If s ∈ S then there exists P ∈ P such that s ∈ P , and

(b) If P1, P2 ∈ P and P1 ∩ P2 ̸= ∅ then P1 = P2.

Theorem 4.2.

(a) If S is a set and let ∼ be an equivalence relation on S then

the set of equivalence classes of ∼ is a partition of S.

(b) If S is a set and P is a partition of S then

the relation defined by s ∼ t if s and t are in the same P ∈ P

is an equivalence relation on S.

4.7 Partially ordered sets

Let S be a set.

• A partial order on S is a relation ≤ on S such that

(a) If x ∈ A then x ≤ x,

(b) If x, y, z ∈ S and x ≤ y and y ≤ z then x ≤ z, and

(c) If x, y ∈ S and x ≤ y and y ≤ x then x = y.

• A total order on S is a partial order ≤ such that

(d) If x, y ∈ S then x ≤ y or y ≤ x.

• A partially ordered set, or poset, is a set S with a partial order ≤ on S.

• A totally ordered set is a set S with a total order ≤ on S.
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The poset of subsets of {α, β, γ} with inclusion as ≤
Let S be a poset. Write

x < y if x ≤ y and x ̸= y.

• The Hasse diagram of S is the graph with vertices S and directed edges given by

x→ y if x ≤ y.

• A lower order ideal of S is a subset E of S such that

if y ∈ E and x ∈ S and x ≤ y then x ∈ E.

• The intervals in S are the sets

S[a,b] = {x ∈ S | a ≤ x ≤ b} S(a,b) = {x ∈ S | a < x < b}
S[a,b) = {x ∈ S | a ≤ x < b} S(a,b] = {x ∈ S | a < x ≤ b}
S(−∞,b] = {x ∈ S | x ≤ b} S[a,∞) = {x ∈ S | a ≤ x}
S(−∞,b) = {x ∈ S | x < b} S(a,∞) = {x ∈ S | a < x}

for a, b ∈ S.

4.8 Upper and lower bounds, sup and inf

Let S be a poset and let E be a subset of S.

• An upper bound of E in S is an element b ∈ S such that if y ∈ E then y ≤ b.

• A lower bound of E in S is an element l ∈ S such that if y ∈ E then l ≤ y.

• A greatest lower bound of E in S is an element inf(E) ∈ S such that

(a) inf(E) is a lower bound of E in S, and

(b) If l ∈ S is a lower bound of E in S then l ≤ inf(E).

• A least upper bound of E in S is an element sup(E) ∈ S such that

(a) sup(E) is a upper bound of E in S, and

(b) If b ∈ S is a upper bound of E in S then sup(E) ≤ b.

• The set E is bounded in S if E has both an upper bound and a lower bound in S.

Proposition 4.3. Let S be a poset and let E be a subset of S. If sup(E) exists then sup(E) is unique.
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5 The “number systems” Z>0, Z≥0, Z, Q, R, C, R2, Rn

5.1 Numbers and intervals

The positive integers: Z>0 = {1, 2, 3, . . .}.

The nonnegative integers: Z≥0 = {0, 1, 2, 3, . . .}.

The integers: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

The rational numbers: Q =
{

a
b | a ∈ Z, b ∈ Z̸=0 and a

b = c
d if ad = bc

}
.

The real numbers:

R = {±aℓaℓ−1 . . . a1a0.a−1a−2 . . . | ℓ ∈ Z≥0, ai ∈ {0, . . . , 9}, aℓ ̸= 0 if ℓ > 0}.

with a requirement that if ak ̸= 9 then ±aℓ...ak+1ak9999... = ±aℓ...ak+1(ak + 1)000...
so that, for example, 0.9999... = 1.0000....

The complex numbers:
C = {a+ bi | a, b ∈ R} with i2 = −1.

Let a, b ∈ R with a < b. Define

R(a,b) = {x ∈ R | a < x < b}, R[a,b) = {x ∈ R | a ≤ x < b}

R(a,b] = {x ∈ R | a < x ≤ b}, R[a,b] = {x ∈ R | a ≤ x ≤ b}

R(a,∞) = {x ∈ R | a < x}, R[a,∞) = {x ∈ R | a ≤ x}

R(∞,a) = {x ∈ R | x < a}, R(∞,a] = {x ∈ R | x ≤ a}.

Picture of Z ⊆ R ⊆ C

What does 1
a really mean?

1
a is the number that when multiplied by a gives 1.

29



Algebra, Graphing, Numbers,Sets notes, Arun Ram February 3, 2025

5.2 The number systems R, Qp and R((t))

5.2.1 The real numbers

The real numbers R is the set of decimal expansions.
The real numbers R contain the integers Z.

R =

{
±(a−ℓ

(
1
10

)−ℓ
+ a−ℓ+1

(
1
10

)−ℓ+1
+ a−ℓ+2

(
1
10

)−ℓ+2
+ · · · ) | ℓ ∈ Z, aj ∈

Z
10Z

}
∪|

Z =

{
±(a−ℓ

(
1
10

)−ℓ
+ a−ℓ+1

(
1
10

)−ℓ+1
+ · · ·+ a−1

(
1
10

)
+ a0) | ℓ ∈ Z≥0, aj ∈

Z
10Z

}
where Z

10Z = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and the addition and multiplication in R are compatible with the
addition and multiplication in Z.

5.2.2 The p-adic numbers

Let p ∈ Z>0. The p-adic numbers Qp contain the p-adic integers Zp and the nonnegative integers Z≥0.

Qp =

{
a−ℓp

−ℓ + a−ℓ+1p
−ℓ+1 + a−ℓ+2p

−ℓ+2 + · · ·
∣∣∣ ℓ ∈ Z, aj ∈

Z
pZ

}
∪|

Zp =

{
a0p

0 + a1p
1 + a2p

2 + · · ·
∣∣∣ aj ∈ Z

pZ

}
∪|

Z≥0 =

{
a0p

0 + a1p
1 + a2p

2 + · · ·
∣∣∣ aj ∈ Z

pZ
and all but a finite number of the aj are 0

}
,

where Z
pZ = {0, 1, 2, . . . , p− 2, p− 1} and the addition and multiplication in Qp and Zp are compatible

with the addition and multiplication in Z.

5.2.3 Extended polynomials

Let t be a variable.

The rational functions R((t)) contain the formal power series R[[t]] and the polynomials R[t].

R((t)) =
{
a−ℓt

−ℓ + a−ℓ+1t
−ℓ+1 + a−ℓ+2t

−ℓ+2 + · · · | ℓ ∈ Z, aj ∈ R
}

∪|
R[[t]] =

{
a0t

0 + a1t
1 + a2t

2 + · · · | aj ∈ R
}

∪|
R[t] =

{
a0t

0 + a1t
1 + a2t

2 + · · · | aj ∈ R and all but a finite number of the aj are 0
}
,

where R is the real numbers and the addition and multiplication in R((t)) and R[[t]] are compatible
with the addition and multiplication in R.

30



Algebra, Graphing, Numbers,Sets notes, Arun Ram February 3, 2025

5.2.4 Some examples to check.

In R,

1
2 = .5000000 . . . = 5 · 10−1 + 0 · 10−2 + 0 · 10−3 + · · · ,
−1 = −(1 · 100 + 0 · 10−1 + 0 · 10−2 + · · · ),
π = 3.1415926 . . . = 3 · 100 + 1 · 10−1 + 4 · 10−2 + · · · ,
1 = 1.00000.... = 1 · 100 + 0 · 10−1 + 0 · 10−2 + · · ·
= 0.999999 = 9 · 10−1 + 9 · 10−2 + 9 · 10−3 + 9 · 10−4 + · · · .

In Q7,

888 = 6 + 0 · 7 + 4 · 72 + 1 · 73 + 0 · 74 + 0 · 75 + 0 · 76 + · · · ,

−1
6 =

1

1− 7
= 1 + 1 · 7 + 1 · 72 + 1 · 73 + 1 · 74 + · · · ,

−1 = 6 ·
(
−1

6

)
= 6 + 6 · 7 + 6 · 72 + 6 · 73 + 6 · 74 + · · · ,

1
2 = 1 + 3 ·

(
−1

6

)
= 4 + 3 · 7 + 3 · 72 + 3 · 73 + 3 · 74 + · · · ,

−6 = 1 + 7 · (−1) = 1 + 6 · 7 + 6 · 72 + 6 · 73 + 6 · 74 + · · · ,

In R((t)),

1

1− t
= 1 + t+ t2 + t3 + t4 + · · · ,

et = 1 + t+
1

2!
t2 +

1

3!
t3 +

1

4!
t4 + · · · ,

sin t = t− 1

3!
t3 +

1

5!
t5 − 1

7!
t7 + · · · ,

1

t3(1− t)
= t−3 + t−2 + t−1 + t+ t2 + · · · .

5.2.5 R and Qp and R((t)) are metric spaces

Fix a number e ∈ R>0.

If x, y ∈ R the distance between x and y is

d(x, y) = e−val1/10(y−x), where

val1/10
(
± (aℓ

(
1
10

)ℓ
+ aℓ−1

(
1
10

)ℓ+1
+ al−2

(
1
10

)ℓ+2
+ · · · )

)
= ℓ

if ℓ ∈ Z is minimal such that aℓ ̸= 0.

If x, y ∈ Qp then the distance between x and y is

d(x, y) = e−valp(y−x), where valp
(
aℓp

ℓ + aℓ+1p
ℓ+1 + aℓ+2p

ℓ+2 + · · ·
)
= ℓ

if ℓ ∈ Z is minimal such that aℓ ̸= 0.

If x, y ∈ R((t)) then the distance between x and y is

d(x, y) = e−valt(y−x) where valt
(
aℓt

ℓ + aℓ+1t
ℓ+1 + aℓ+2t

ℓ+2 + · · ·
)
= ℓ

if ℓ ∈ Z is minimal such that aℓ ̸= 0.
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5.3 The complex numbers C

The complex numbers is the R-algebra

C = {x+ iy | x, y ∈ R} with i2 = −1,

so that if z1 = x1 + iy1 and z2 = x2 + iy2 then

z1 + z2 = (x1 + iy1) + (x2 + iy2)
= (x1 + x2) + i(y1 + y2)

and
z1z2 = (x1 + iy1)(x2 + iy2)

= x1x2 + i(x1y2 + x2y1) + i2y1y2
= (x1x2 − y1y2) + i(x1y2 + x2y1).

The complex conjugation, or Galois automorphism, is the function

: C→ C given by x+ iy = x− iy.

The norm, or length function, on C is the function

| | : C→ R≥0 given by |x+ iy| =
√

x2 + y2.

The Hermitian form, or inner product, on C is

⟨, ⟩ : C× C→ C given by ⟨z1, z2⟩ = z1z2.

Graphing complex numbers

If r ∈ R≥0 and θ ∈ R then
reiθ = r cos θ + ir sin θ.

If z ∈ C and z ̸= 0 then

z−1 =
1

|z|2
z,

since if z = x+ iy then

1

z
=

1

x+ iy
=

1

(x+ iy)

(x− iy)

(x− iy)
=

x− iy

x2 + y2
=

x

x2 + y2
− i

y

x2 + y2
.

HW: Show that if z ∈ C then |z|2 = zz.
HW: Show that if z1, z2 ∈ C then |z1z2| = |z1| |z2|.

32



Algebra, Graphing, Numbers,Sets notes, Arun Ram February 3, 2025

5.4 The 3d-space-time D

The 3d-space-time, or the Hamiltonians, or the quaternions, is the vector space

D = R-span{1, i, j, k} = {t+ xi+ yj + zk | t, x, y, z ∈ R}

with product determined by

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j,

and the distributive laws. The 3d-space-time D is a generalization of 1d-space-time C, where

C = {xi+ t | x, t ∈ R} with product determined by i2 = −1 and the distributive laws.

The 3d-space R3 is a subspace of 3d-space-time D,

D = {t+ xi+ yj + zk | t, x, y, z ∈ R}
∪|
R3 = {xi+ yj + zk | x, y, z ∈ R}

For v1 = x1i+ y1j + z1k and v2 = x2i+ y2j + z2k in R3 define

⟨v1 | v2⟩ = x1y1 + y1y2 + z1z2 and

v1 × v2 = (y1z2 − z1y2)i− (x1z2 − z1x2)j + (x1y2 − y1x2)k.

Then

v1v2 = (x1i+ y1j + z1k)(x2i+ y2j + z2k)

= −(x1x2 + y1y2 + z1z2) + (x1y2ij + y1x2ji) + (x1z2ik + z1x2ki) + (y1z2jk + z1y2kj)

= −⟨v1, v2⟩+ (x1y2 − y1x2)k − (x1z2 − z1x2)j + (y1z2 − z1y2)i

= −⟨v1 | v2⟩+ v1 × v2.

This computation shows how the standard inner product and the cross product arise from the multi-
plication in 3d-space-time.

The Galois automorphism, or conjugation map, is the function : D→ D given by

t+ xi+ yj + zk = t− xi− yj − zk, for t, x, y, z ∈ R.

The norm on D is the function ∥ ∥ : D→ R≥0 given by

∥d∥ =
√

d d.

HW:. Show that if d1, d2 ∈ D then d1d2 = d1 · d2.
HW:. Show that if t, x, y, z ∈ R and d = t+ xi+ yj + zk then

dd = t2 + x2 + y2 + z2.

HW:. Show that if d ∈ D and d ̸= 0 then

1

∥d∥2
d = d−1.
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5.5 The favourite space R2

The favourite example is R2 = {(x1, x2) | x1, x2 ∈ R} with addition and scalar multiplication given by

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) and c(x1, x2) = (cx1, cx2), for c ∈ R,

with inner product

R2 × R2 −→ R≥0

(x, y) 7−→ ⟨x, y⟩ given by ⟨(x1, x2), (y1, y2)⟩ = x1y1 + x2y2,

with norm
R2 −→ R≥0

x 7−→ ∥x∥ given by ∥(x1, x2)∥ =
√

x21 + x22,

with metric d : R2 × R2 → R≥0 given by

d((x1, x2), (y1, y2)) = ∥(x1, x2)− (y1, y2)∥ = ∥(x1 − y1, x2 − y2)∥ =
√

(x1 − y1)2 + (x2 − y2)2,

with angle function θ : R2 × R2 → R[0,2π) given by

θ((x1, x2), (y1, y2)) = arccos
( ⟨(x1, x2), (y1, y2)⟩
∥(x1, x2)∥ · ∥(y1, y2)∥

)
,

and
Bϵ(x) = {y ∈ R2 | d(y, x) < ϵ}

is the ball of radius ϵ centered at x (yes, to stress, strongly, that we normally assume that the set R2

is endowed with lots of extra structures this is, intentionally, a very run-on sentence).

Open balls in R2.

5.6 The favourite spaces Rn

5.6.1 n-tuples are functions

Let n ∈ Z>0. Identify n-tuples (x1, . . . , xn) of elements of R with functions x⃗ : {1, 2, . . . , n} → R so
that

the n-tuple (x1, . . . , xn) is identified with the function
x⃗ : {1, . . . , n} → R

i 7→ xi
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5.6.2 The vector space Rn

Let n ∈ Z≥0. The space of functions from {1, 2, . . . , n} to R is

Rn = {(x1, x2, . . . , xn) | xi ∈ R} = {functions x⃗ : {1, . . . , n} → R}.

with addition and scalar multiplication given by

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn) and

c(x1, x2, . . . , xn) = (cx1, cx2, . . . , xn), for c ∈ R,

and with inner product ⟨ , ⟩ : Rn × Rn → R≥0 given by

⟨(x1, x2, . . . , xn), (y1, y2, . . . , yn)⟩ = x1y1 + x2y2 + · · ·xnyn,

with norm

Rn −→ R≥0

x 7−→ ∥x∥ given by ∥(x1, x2, . . . , xn)∥ =
√

x21 + x22 + · · ·+ x2n,

with metric d : Rn × Rn → R≥0 given by

d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = ∥(x1, x2, . . . , xn)− (y1, y2, . . . , yn)∥

= ∥(x1 − y1, x2 − y2, . . . , xn − yn)∥ =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2,

with angle function θ : Rn × Rn → R[0,2π) given by

θ((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = arccos
( ⟨(x1, x2, . . . , xn), (y1, y2, . . . , yn)⟩
∥(x1, x2, . . . , xn)∥ · ∥(y1, y2, . . . , yn)∥

)
,

and
Bϵ(x) = {y ∈ Rn | d(y, x) < ϵ}

is the ball of radius ϵ centered at x (yes, to stress, strongly, that we normally assume that the set Rn

is endowed with lots of extra structures this is, intentionally, a very run-on sentence).
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5.7 Matrices

Let F be a field. Let m,n ∈ Z>0.

• An m×n matrix with entries in F is a table of elements of F with m rows and n columns. More
precisely, an m× n matrix with entries in F is a function

A : {1, . . . ,m} × {1, . . . , n} −→ F.

• A column vector of length n is an n× 1 matrix.

• A row vector of length n is an 1× n matrix.

• The (i, j) entry of a matrix A is the element A(i, j) in row i and column j of A.

A =


A(1, 1) A(1, 2) · · · A(1,m)
A(2, 1) A(2, 2) · · · A(2,m)

...
...

A(n, 1) A(n, 2) · · · A(n,m)


Let Mm×n(F) be the set of m× n matrices with entries in F.
Let Mn(F) = Mn×n(F) be the set of n× n matrices with entries in F.

• The sum of m× n matrices A and B is the m× n matrix A+B given by

(A+B)(i, j) = A(i, j) +B(i, j), for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

• The scalar multiplication of an element c ∈ F with an m× n matrix A is the m× n matrix c ·A
given by

(c ·A)(i, j) = c ·A(i, j), for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

• The product of an m× n matrix A and an n× p matrix B is the m× p matrix AB given by

(AB)(i, k) =

n∑
j=1

A(i, j)B(j, k)

= A(i, 1)B(1, k) +A(i, 2)B(2, k) + · · ·+A(i, n)B(n, k),

for i ∈ {1, . . . ,m} and k ∈ {1, . . . , p}.

The zero matrix is the m× n matrix 0 ∈Mm×n(F) given by

0(i, j) = 0, for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

The negative of a matrix A ∈Mm×n(F) is the matrix −A ∈Mm×n(F) given by

(−A)(i, j) = −A(i, j), for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

For k ∈ {1, . . . ,m} and ℓ ∈ {1, . . . , n} let Ekℓ ∈Mm×n(F) be the matrix given by

Ekℓ(i, j) =

{
1, if i = k and j = ℓ,

0, otherwise,

so that Ekℓ has a 1 in the (k, ℓ) entry and all other entries 0.
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Proposition 5.1. Let m,n ∈ Z>0 and let Mm×n(F) be the set of m× n matrices with entries in F.
(a) If A,B,C ∈Mm×n(F) then A+ (B + C) = (A+B) + C.

(b) If A,B ∈Mm×n(F) then A+B = B +A.

(c) If A ∈Mm×n(F) then 0 +A = A and A+ 0 = A.

(d) If A ∈Mm×n(F) then (−A) +A = 0 and A+ (−A) = 0.

(e) If A ∈Mm×n(F) and c1, c2 ∈ F then c1 · (c2 ·A) = (c1c2) ·A.

(f) If A ∈Mm×n(F) and 1 ∈ F is the identity in F then 1 ·A = A.

The Kronecker delta is given by

δij =

{
1, if i = j,

0, otherwise.

The identity matrix is the n× n matrix 1 ∈Mn×n(F) given by

1(i, j) = δij , for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

Proposition 5.2. Let n ∈ Z>0 and let Mn(F) be the set of n× n matrices in F.
(a) If A,B,C ∈Mn(F) then A+ (B + C) = (A+B) + C.

(b) If A,B ∈Mn(F) then A+B = B +A.

(c) If A ∈Mn(F) then 0 +A = A and A+ 0 = A.

(d) If A ∈Mn(F) then (−A) +A = 0 and A+ (−A) = 0.

(e) If A,B,C ∈Mn(F) then A(BC) = (AB)C.

(f) If A,B,C ∈Mn(F) then (A+B)C = AC +BC and C(A+B) = CA+ CB.

(g) If A ∈Mn(F) then 1A = A and A1 = A.

The transpose of an m× n matrix A is the n×m matrix At given by

At(i, j) = A(j, i), for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

Proposition 5.3. Let m,n ∈ Z>0, let Mm×n(F) be the set of m× n matrices with entries in F, and
let Mn(F) be the set of n× n matrices in F.

(a) If A,B ∈Mm×n(F) then (A+B)t = At +Bt,

(b) If A ∈Mm×n(F) and c ∈ F then (c ·A)t = c ·At,

(c) If A,B ∈Mn(F) then (AB)t = BtAt.

(d) If A ∈Mn(F) then (At)t = A.

Proposition 5.4. Let m,n ∈ Z>0, let Mm×n(F) be the set of m×n matrices with entries in F. Then

(a) (span) Mm×n(F) =


m∑
i=1

n∑
j=1

cijEij

∣∣ cij ∈ F

.

(b) (linear independence) If c11, . . . , cmn ∈ F and

m∑
i=1

n∑
j=1

cijEij = 0 then if k ∈ {1, . . . ,m} and ℓ ∈ {1, . . . , n} then ckℓ = 0.
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5.8 Fields

A field is a set F with functions

F× F −→ F
(a, b) 7−→ a+ b

and
F× F −→ F
(a, b) 7−→ ab

such that

(Fa) If a, b, c ∈ F then (a+ b) + c = a+ (b+ c),

(Fb) If a, b ∈ F then a+ b = b+ a,

(Fc) There exists 0 ∈ F such that

if a ∈ F then 0 + a = a and a+ 0 = a,

(Fd) If a ∈ F then there exists −a ∈ F such that a+ (−a) = 0 and (−a) + a = 0,

(Fe) If a, b, c ∈ F then (ab)c = a(bc),

(Ff) If a, b, c ∈ F then
(a+ b)c = ac+ bc and c(a+ b) = ca+ cb,

(Fg) There exists 1 ∈ F such that

if a ∈ F then 1 · a = a and a · 1 = a,

(Fh) If a ∈ F and a ̸= 0 then there exists a−1 ∈ F such that aa−1 = 1 and a−1a = 1,

(Fi) If a, b ∈ F then ab = ba.

Proposition 5.5. Let F be a field.

(a) If a ∈ F then a · 0 = 0.

(b) If a ∈ F then −(−a) = a.

(c) If a ∈ F and a ̸= 0 then (a−1)−1 = a.

(d) If a ∈ F then a(−1) = −a.
(e) If a, b ∈ F then (−a)b = −ab.
(f) If a, b ∈ F then (−a)(−b) = ab.

5.9 Z-algebras

A Z-algebra is a set A with functions

A× A −→ A
(a, b) 7−→ a+ b

and
A× A −→ A
(a, b) 7−→ ab

such that

(Aa) If a, b, c ∈ F then (a+ b) + c = a+ (b+ c),

(Ab) If a, b ∈ F then a+ b = b+ a,
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(Ac) There exists 0 ∈ F such that

if a ∈ F then 0 + a = a and a+ 0 = a,

(Ad) If a ∈ F then there exists −a ∈ F such that a+ (−a) = 0 and (−a) + a = 0,

(Ae) If a, b, c ∈ F then (ab)c = a(bc),

(Af) If a, b, c ∈ F then
(a+ b)c = ac+ bc and c(a+ b) = ca+ cb,

(Ag) There exists 1 ∈ F such that

if a ∈ F then 1 · a = a and a · 1 = a,

Proposition 5.6. Let A be a Z-algebra.
(a) If a ∈ A then a · 0 = 0.

(b) If a ∈ A then −(−a) = a.

(d) If a ∈ A then a(−1) = −a.
(e) If a, b ∈ A then (−a)b = −ab.
(f) If a, b ∈ A then (−a)(−b) = ab.

5.10 Ordered fields

An ordered field is a field F with a total order ≤ such that

(OFa) If a, b, c ∈ F and a ≤ b then a+ c ≤ b+ c,

(OFb) If a, b ∈ F and a ≥ 0 and b ≥ 0 then ab ≥ 0.

Proposition 5.7. Let F be an ordered field.

(a) If a ∈ F and a > 0 then −a < 0.

(b) If a ∈ F and a ̸= 0 then a2 > 0.

(c) 1 ≥ 0.

(d) If a ∈ F and a > 0 then a−1 > 0.

(e) If a, b ∈ F and a ≥ 0 and b ≥ 0 then a+ b ≥ 0.

(f) If a, b ∈ F and 0 < a < b then b−1 < a−1.

Proposition 5.8. Let F be an ordered field. Let x, y ∈ F with x ≥ 0 and y ≥ 0. Then

x ≤ y if and only if x2 ≤ y2.

39



Algebra, Graphing, Numbers,Sets notes, Arun Ram February 3, 2025

5.11 Limits, continuity, sequences and series

5.11.1 Limits and Continuity

Let f be a function, say f : R→ R or f : C→ C. Write

lim
x→a

f(x) = ℓ if f(x) gets closer and closer to ℓ as x gets closer and closer to a.

Write

lim
x→∞

f(x) = ℓ if f(x) gets closer and closer to ℓ as x gets larger and larger.

Let s, t ∈ Z>0 and let p ∈ R. A function f : R→ R is continuous at p if

lim
x→p

f(x) = f(p).

A function f : R→ R is continuous if f satisfies: if p ∈ R then f is continuous at p.

Theorem 5.9. Let c ∈ R. The functions

R× R → R
(a1, a2) 7→ a1 + a2

and
R× R → R
(a1, a2) 7→ a1a2

and
R → R
a 7→ ca

are continuous.

Theorem 5.10. Let f : R→ R and g : R→ R.

If f and g are continuous then
g ◦ f : R → R

a 7→ g(f(a))
is continuous.

5.11.2 xn and ex are continuous

Proposition 5.11.

(a) Let n ∈ Z>0. The function f : R→ R given by f(a) = an is continuous.

(b) The function f : R→ R given by f(a) = ea is continuous.

Since addition, multiplication and scalar multiplication in R are continuous (Theorem 5.9) then
all polynomial functions are continuous, the trigonometric functions sin and cos are continuous, and
the hyperbolic functions sinh and cosh are continuous.

5.11.3 Sequences

A sequence (a1, a2, . . .) in C is a function
Z>0 → C
n 7→ an.

Write
lim
x→∞

an = ℓ if an gets closer and closer to ℓ as n gets larger and larger.
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The fact that R is ordered and consists of all infinite decimal expansions gives two very useful state-
ments:

1. (Cauchy criterion) If (a1, a2, a3, . . .) is a sequence in R which satisfies

if k ∈ Z>0 then there exists Nk ∈ Z>0 such that if m ∈ Z>Nk
then |am − aNk

| < 10−k

then
ℓ = lim

n→∞
an exists in R

(the first k decimal places of ℓ are the same as the first k decimal places of aNk
).

2. (bounded increasing sequences have limits) If (a1, a2, a3, . . .) is a sequence in R such that there
exists b ∈ R such that

if n ∈ Z>9 then an ≤ an+1 and an ≤ b

then
ℓ = lim

n→∞
an exists in R,

(the limit ℓ is the smallest real number such that if n ∈ Z>0 then an ≤ ℓ).

5.11.4 Series

Let (a1, a2, a3, . . .) be a sequence in R or C. Write
∞∑
n=1

an = ℓ if lim
r→∞

( r∑
n=1

an

)
= ℓ,

where

r∑
n=1

an = a1 + a2 + · · ·+ ar. In other words,

the series

∞∑
n=1

an is the sequence (s1, s2, s3, . . .), where

s1 = a1,
s2 = a1 + a2,
s3 = a1 + a2 + a3,

...

Let s ∈ C.

The constant series at s is c(s) =
∞∑
n=1

s,

the geometric series at s is g(s) =

∞∑
n=0

sn,

the exponential function at s is es =
∞∑
n=0

1

n!
sn,

the Riemann zeta function at s is ζ(s) =
∞∑
n=1

1

ns
.

HW:. Show that c(0) = 0 and if s ̸= 0 then c(s) does not exist in C.
HW:. Show that if |s| < 1 then g(s) = 1

1−s and if |s| > 1 then g(s) does not exist in C.
HW:. Show that if s ∈ C then es exists in C.
HW:. Assume that p ∈ R>0. Show that if p < 1 tnen ζ(p) exists in R and if p ≥ 1 then ζ(p) does not
exist in C.
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6 Proof machine

This section is the salvation for a student of mathematics.

6.1 Andante cantabile

6.1.1 Memories

It was in the second semester of my undergraduate education at MIT that I first met pure mathe-
matics, open and closed sets, the book “Baby Rudin”, and Warren Ambrose. The course was ‘18.100
Mathematical Analysis’. Warren Ambrose had a great effect on me. Somehow we had a one-to-one
conversation where we both confessed that our true love was music and that we were doing math only
as a backup. At the time, I was still far from being a professional mathematician and he was a famous
geometer nearing the end of his career and his life (it was 1984 and he died in 1995 at the age of 81).
He told me that he had been a jazz trumpet player but an accident had made him unable to play
properly and so he had pursued mathematics for a profession. His exams (two midterm exams and a
final) were all 24 hour open-book closed-friend take-home tests: 10 questions, true or false, graded 1 if
correct, -1 if incorrect, and 0 if not answered. The average score across the class (about 20 students)
was often around 0. But this mechanism taught you better than any other what proof meant – if
you were unable to provide a proof you believed in then you risked getting -1 for that question. The
questions were always very interesting. I carried those questions around for years until sometime in
2012 when I accidentally left them in a classroom and, when I came back to find them an hour later,
they were gone.

6.1.2 Assume the Ifs and To show the Thens: “Proof machine”

The first courses I had that required me to start constructing proofs (Mathematical Analysis, Abstract
algebra, Topology) were tough for me. I couldn’t figure out the magic trick that made some people
able to do this. By the time I started graduate school I still hadn’t figured out this magic and I thought
it likely that without it it would be impossible for me to succeed in obtaining a PhD in mathematics.
On the other hand I began to notice that, in combinatorics particularly, if I knew that I could make
some bijection or other then I was absolutely sure that I could make it and there was something more
than just wishy-washy hand waving that I was doing to have this certainty. I was just starting to get
the hang of it.

It was when I was a postdoc that I realized that most of mathematics is just mechanical work,
and the bright ideas that are needed are few and far between. This gave me confidence as I was sure
that I had the diligence and endurance to do mechanical work, and I was also pretty certain that if
any actual “talent” was going to be required then I wasn’t going to be a successful mathematician.

Just at that moment I got assigned to teach the undergraduate Abstract Algebra course (at Univ.
of Wisconsin–Madison) and so I needed to figure out how to explain to my students how they too
could do the necessary proofs. That was the catalyst for me to formulate the mechanism that I now
call “proof machine”.

As I have progressed in a career as a professional research mathematician I have been amazed to
observe how many times “proof machine” has saved me, provided the direction, guided me to where
I might have to think, clarified where I didn’t need to waste effort thinking, provided the proof and
protected me from making mistakes.

“Proof machine” was also the key that unlocked the mysterious world of writing and changed
me from a teenager who hated English class, any kind of writing and especially term papers, into a
versatile writer (at least in the cases when I do the writing carefully and thoroughly and with the
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same structural framework that I use when I do a proof in “proof machine” in mathematics). I am
always struck by how helpful “proof machine” is for getting out good writing (letters, reports, reviews,
papers, memos, emails, etc).

I am continually amazed at how useful “proof machine” is in my daily life and meetings, in helping
me be organised and efficient, helping me to get to the core of the issue as necessary, and helping me
to optimize impact and productivity for effort expended. “Proof machine” is a skill (not a talent)
which is learned by practice (and more practice and more practice) in the same way that one develops
skill and facility on a musical instrument by lots of practice.

My hope is that I can teach“proof machine” to as many of my students as I can so that they can
also benefit from this wonderful tool in their lives and careers. After all, it is really easy: To prove “If
A then B”, Assume the ifs and To show the thens, and that’s about all there is to it. The rest is just
practice.
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6.2 The grammar of mathematics

• Definitions are the foundation of mathematics.

• Theorems are the landmarks of mathematics.

• Proofs are the explanation of mathematics.

Learning to read, write and speak mathematics is a skill that anyone can learn. Like all languages, it
requires lots of practice to use it fluently.

Like all languages, the grammar of quality mathematical communication is very rigid.

It is impossible to prove a statement without being able to write down the definitions of all the terms
in the statement.

The grammar of a definition is:

A noun is a such that

(a) If then , and

(b) If then , and

(c) If then , and ...

Let F be field and let V and W be F-vector spaces.

A linear transformation from V to W is a function f : V → W
such that

(a) If v1, v2 ∈ V then f(v1 + v2) = f(v1) + f(v2),

(b) If c ∈ F and v ∈ V then f(cv) = cf(v).

An adjective is most conveniently defined by putting it in the form of a noun:

A adjective noun is a noun such that

(a) If then , and

(b) If then , and

(c) If then , and ...

An injective function is a function f : S → T such that

(a) If s1, s2 ∈ S and s1 ̸= s2 then f(s1) ̸= f(s2).

Sometimes definitions of adjectives take the form:

Let S be a noun.

A noun S is adjective if S satisfies

(a) If then , and

(b) If then , and

(c) If then , and ...

Let f : S → T be a function.

A function f : S → T is injective if f satisfies

(a) If s1, s2 ∈ S and s1 ̸= s2 then f(s1) ̸= f(s2).

The words “let” and “assume” are synonyms for “if”. The grammar of a lemma, proposition or
theorem (or any other statement) is:

If then .

Two special constructions in mathematical language are:

There exists such that .

and

There exists a unique such that .
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6.3 How to do Proofs: “Proof Machine”

There is a certain “formula” or method to doing proofs. Some of the guidelines are given below. The
most important factor in learning to do proofs is practice, just as when one is learning a new language.

1. There are very few words needed in the structure of a proof. Organized in rows by synonyms
they are:

To show

Assume, Let, Suppose, Define, If

Since, Because, By

Then, Thus, So

There exists, There is

Recall, We know, But

Do not use ‘for all’ or ‘for each’. These can always be replaced by ‘if’ to achieve greater
clarity, accuracy and efficiency.

Do not use the phrase ‘for some’. It can always be replaced by ‘There exists’ to achieve
greater clarity, accuracy and efficiency.

2. The overall structure of a proof is a block structure like an outline. For example:

To show: If A then B and C .

Assume: A .

[itemsep=-0.2em]

To show: (a) B .

(b) C .

(a) To show: B .

.

.

.

Thus B .
(b) To show: C .

.

.

.

Thus C .

So B and C .

So, if A then B and C .

3. Any proof or section of proof begins with one of the following:

(a) To show: If A then B .

(b) To show: There exists C such that D .

(c) To show: E .

4. Immediately following this, the next step is
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Case (a) Assume the ifs and ‘To show’ the thens. The next lines are

◦ Assume A .
◦ To show: B .

Case (b) To show an object exists you must find it. The next lines are

◦ Define xxx = .
◦ To show: xxx satisfies D .

Case (c) Rewrite the statement in E by using a definition. The next line is

◦ To show: E′ .

There are some kinds of proofs which have a special structure.

(E) Proofs of equality: LHS=RHS.

To show: A=B .

Left Hand Side: A= · · ·
= · · ·
= · · ·
= · · ·
= expression

Right Hand Side: B= · · ·
= · · ·
= · · ·
= · · ·
= THE SAME expression

(F) Counterexamples: Proofs of falseness

To show that a statement, “If then ”, is false you must give an example.

To show: There exists a xxx such that

(a) xxx satisfies the ifs of the statement that you are showing is false,
(a) xxx satisfies the opposite of some assertion in the thens of the statement that you are
showing is false.

(U) Proofs of uniqueness.

To show that an object is unique you must show that if there are two of them then they are
really the same.

To show: A THING is unique.

Assume X1 and X2 are both THINGs.
To show: X1 = X2.
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(I) Proofs by induction.

A statement to be proved by induction must have the form

If n is a positive integer then A .

The proof by induction should have the form

Proof by induction.

Base case:

To show: If n = 1 then A .

.

.

.

Thus, if n = 1 then A .

Induction step:

Let ℓ be a positive integer and assume that if n is a positive integer and n <
ℓ then A .

To show: A .

The mechanics of proof by induction is an unwinding of the definition of Z>0.

(CP) Proofs by contrapositive.

To show: If A then B .

To show: If not B then not A .

(BAD) Proofs by contradiction.

(*) Assume the opposite of what you want to show.
.

.

.

End up showing the opposite of some assumption (not necessarily the (*) assumption).
Contradiction to specify exactly what assumption is being contradicted.
Thus assumption (*) is wrong and what you want to show is true.

PROOFS BY CONTRADICTION ARE STRONGLY DISCOURAGED. In all known
cases they can be replaced by a proof by contrapositive for greater clarity, direction
and efficiency.
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6.4 Example proofs

The following example proofs have been chosen because they are results that are often assumed, are
needed for many topics in calculus, algebra and analysis and topology and are rarely proved carefully
in an undergraduate curriculum; facts like, if a ̸= 0 then a2 > 0. These often seem “obvious”, until
you meet that first example, like a field witih 5 elements, where 2 ̸= 0 and 22 = −1. After getting over
the initial shock, then one begins to wonder why such a fact might ever be true, and how it might be
proved when it is. It is proved in Proposition 6.5(b), below.

6.4.1 An inverse function to f exists if and only if f is bijective.

Functions are for comparing sets.

Let S and T be sets. A function from S to T is a subset Γf ⊆ S × T such that

if s ∈ S then there exists a unique t ∈ T such that (s, t) ∈ Γf .

Write
Γf = {(s, f(s)) | s ∈ S}

so that the function Γf can be expressed as

an “assignment”
f : S → T

s 7→ f(s)

which must satisfy

(a) If s ∈ S then f(s) ∈ T , and

(b) If s1, s2 ∈ S and s1 = s2 then f(s1) = f(s2).

In other words, a function is a creature that eats an element of S, chews on it, and spits out an
element of T .

elements of S

f

x f(x) elements of T

What a function spits out depends only on what goes in.
Let S and T be sets.

• Two functions f : S → T and g : S → T are equal if they satisfy

if s ∈ S then f(s) = g(s).

• A function f : S → T is injective if f satisfies the condition

if s1, s2 ∈ S and f(s1) = f(s2) then s1 = s2.

• A function f : S → T is surjective if f satisfies the condition

if t ∈ T then there exists s ∈ S such that f(s) = t.
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• A function f : S → T is bijective if f is both injective and surjective.

Examples. It is useful to visualize a function f : S → T as a graph with edges (s, f(s)) connecting
elements s ∈ S and f(s) ∈ T . With this in mind the following are examples:

(a) a function (b) not a function (c) not a function

(d) an injective function (e) a surjective function (f) a bijective function

In these pictures the elements of the left column are the elements of the set S and the elements of the
right column are the elements of the set T . In order to be a function the graph must have exactly one
edge adjacent to each point in S. The function is injective if there is at most one edge adjacent to
each point in T . The function is surjective if there is at least one edge adjacent to each point in T .

Composition of functions

Let f : S → T and g : T → U be functions. The composition of f and g is the function

g ◦ f given by
g ◦ f : S → U

s 7→ g(f(s))

Let S be a set. The identity map on S is the function given by

idS : S → S
s 7→ s

Let f : S → T be a function. The inverse function to f is a function

f−1 : T → S such that f ◦ f−1 = idT and f−1 ◦ f = idS .

Theorem 6.1. Let f : S → T be a function. An inverse function to f exists if and only if f is
bijective.

Representing functions as graphs, the identity function idS looks like

(a) the identity function idS
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In the pictures below, if the left graph is a pictorial representation of a function f : S → T then the
inverse function to f , f−1 : T → S, is represented by the graph on the right; the graph for f−1 is the
mirror-image of the graph for f .

(b) the function f (c) the function f−1

Graph (d) below, represents a function g : S → T which is not bijective. The inverse function to g
does not exist in this case: the graph (e) of a possible candidate, is not the graph of a function.

(d) the function g (e) not a function

Theorem 6.2. Let f : S → T be a function. The inverse function to f exists if and only if f is
bijective.

Proof.

⇒: Assume f : S → T has an inverse function f−1 : T → S.

To show: (a) f is injective.

(b) f is surjective.

(a) Assume s1, s2 ∈ S and f(s1) = f(s2).

To show: s1 = s2.
s1 = f−1f(s1)) = f−1f(s2)) = s2.

So f is injective.

(b) Let t ∈ T .

To show: There exists s ∈ S such that f(s) = t.

Let s = f−1(t).

Then
f(s) = f(f−1(t)) = t.

So f is surjective.

So f is bijective.

⇐: Assume f : S → T is bijective.

To show: f has an inverse function.

We need to define a function φ : T → S.

Let t ∈ T .

Since f is surjective there eists s ∈ S such that f(s) = t.
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Define φ(t) = s.

To show: (a) φ is well defined.

(b) φ is an inverse function to f .

(a) To show: (aa) If t ∈ T then φ(t) ∈ S.
(ab) If t1, t2 ∈ T and t1 = t2 then φ(t1) = φ(t2).

(aa) This follows from the definition of φ.
(ab) Assume t1, t2 ∈ T and t1 = t2.

Let s1, s2 ∈ S such that f(s1) = t1 and f(s2) = t2.
Since t1 = t2 then f(s1) = f(s2).
Since f is injective this implies that s1 = s2.
So φ(t1) = s1 = s2 = φ(t2).

So φ is well defined.
(b) To show: (ba) If s ∈ S then φ(f(s)) = s.

(bb) If t ∈ T then f(φ(t)) = t.

(ba) This follows from the definition of φ.
(bb) Assume t ∈ T .

Let s ∈ S be such that f(s) = t.
Then

f(φ(t)) = f(s) = t.

So φ ◦ f and f ◦ φ are the identity functions on S and T , respectively.

So φ is an inverse function to f .

6.4.2 An equivalence relation on S and a partition of S are the same data.

Let S be a set.

• A relation ∼ on S is a subset R∼ of S × S. Write s1 ∼ s2 if the pair (s1, s2) is in the subset R∼
so that

R∼ = {(s1, s2) ∈ S × S | s1 ∼ s2}.

• An equivalence relation on S is a relation ∼ on S such that

(a) if s ∈ S then s ∼ s,
(b) if s1, s2 ∈ S and s1 ∼ s2 then s2 ∼ s1,
(c) if s1, s2, s3 ∈ S and s1 ∼ s2 and s2 ∼ s3 then s1 ∼ s3.

Let ∼ be an equivalence relation on a set S and let s ∈ S. The equivalence class of s is the set

[s] = {t ∈ S | t ∼ s}.

A partition of a set S is a collection P of subsets of S such that

(a) If s ∈ S then there exists P ∈ P such that s ∈ P , and

(b) If P1, P2 ∈ P and P1 ∩ P2 ̸= ∅ then P1 = P2.

Theorem 6.3.
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(a) If S is a set and let ∼ be an equivalence relation on S then

the set of equivalence classes of ∼ is a partition of S.

(b) If S is a set and P is a partition of S then

the relation defined by s ∼ t if s and t are in the same P ∈ P

is an equivalence relation on S.

Proof.

(a) To show: (aa) If s ∈ S then s is in some equivalence class.

(ab) If [s] ∩ [t] ̸= ∅ then [s] = [t].

(aa) Let s ∈ S.
Since s ∼ s then s ∈ [s].

(ab) Assume [s] ∩ [t] ̸= ∅.
To show: [s] = [t].
Since [s] ∩ [t] ̸= ∅ then there is an r ∈ [s] ∩ [t].
So s ∼ r and r ∼ t.
By transitivity, s ∼ t.
To show: (aba) [s] ⊆ [t].

(abb) [t] ⊆ [s].

(aba) Assume u ∈ [s].
Then u ∼ s.
We know s ∼ t.
So, by transitivity, u ∼ t.
Therefore u ∈ [t].

So [s] ⊆ [t].

(aba) Assume v ∈ [t].
Then v ∼ t.
We know t ∼ s.
So, by transitivity, v ∼ s.
Therefore v ∈ [s].

So [t] ⊆ [s].
So [s] = [t].

So the equivalence classes partition S.

(b) To show: ∼ is an equivalence relation, i.e. that ∼ is reflexive, symmetric and transitive.

To show: (ba) If s ∈ S then s ∼ s.

(bb) If s ∼ t then t ∼ s.

(bc) If s ∼ t and t ∼ u then s ∼ u.

(ba) Since s and s are in the same Sα then s ∼ s.
(bb) Assume s ∼ t.

Then s and t are in the same Sα.

So t ∼ s.
(bb) Assume s ∼ t and t ∼ u.

Then s and t are in the same Sα and t and u are in the same Sα.

So s ∼ u.

So ∼ is an equivalence relation.
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6.4.3 Identities in a field

A field is a set F with functions

F× F −→ F
(a, b) 7−→ a+ b

and
F× F −→ F
(a, b) 7−→ ab

such that

(Fa) If a, b, c ∈ F then (a+ b) + c = a+ (b+ c),

(Fb) If a, b ∈ F then a+ b = b+ a,

(Fc) There exists 0 ∈ F such that

if a ∈ F then 0 + a = a and a+ 0 = a,

(Fd) If a ∈ F then there exists −a ∈ F such that a+ (−a) = 0 and (−a) + a = 0,

(Fe) If a, b, c ∈ F then (ab)c = a(bc),

(Ff) If a, b, c ∈ F then
(a+ b)c = ac+ bc and c(a+ b) = ca+ cb,

(Fg) There exists 1 ∈ F such that

if a ∈ F then 1 · a = a and a · 1 = a,

(Fh) If a ∈ F and a ̸= 0 then there exists a−1 ∈ F such that aa−1 = 1 and a−1a = 1,

(Fi) If a, b ∈ F then ab = ba.

Proposition 6.4. Let F be a field.

(a) If a ∈ F then a · 0 = 0.

(b) If a ∈ F then −(−a) = a.

(c) If a ∈ F and a ̸= 0 then (a−1)−1 = a.

(d) If a ∈ F then a(−1) = −a.
(e) If a, b ∈ F then (−a)b = −ab.
(f) If a, b ∈ F then (−a)(−b) = ab.

Proof.

(a) Assume a ∈ F.

a · 0 = a · (0 + 0), by (Fc),

= a · 0 + a · 0, by (Ff).

Add −a · 0 to each side and use (Fd) to get 0 = a · 0.
(b) Assume a ∈ F.

By (Fd),
−(−a) + (−a) = 0 = a+ (−a).

Add −a to each side and use (Fd) to get −(−a) = a.

(c) Assume a ∈ F and a ̸= 0.

53



Algebra, Graphing, Numbers,Sets notes, Arun Ram February 3, 2025

By (Fh),
(a−1)−1 · a−1 = 1 = a · a−1.

Multiply each side by a and use (Fh) and (Fg) to get (a−1)−1 = a.

(d) Assume a ∈ F.
By (Ff),

a(−1) + a · 1 = a(−1 + 1) = a · 0 = 0,

where the last equality follows from part (a).

So, by (Fg), a(−1) + a = 0.

Add −a to each side and use (Fd) and (Fc) to get a(−1) = −a.
(e) Assume a, b ∈ F.

(−a)b+ ab = (−a+ a)b, by (Ff),

= 0 · b, by (Fd),

= 0, by part (a).

Add −ab to each side and use (Fd) and (Fc) to get (−a)b = −ab.
(f) Assume a, b ∈ F.

(−a)(−b) = −(a(−b)), by (e),

= −(−ab), by (e),

= ab, by part (b).

6.4.4 Identities in an ordered field

An ordered field is a field F with a total order ≤ such that

(OFa) If a, b, c ∈ F and a ≤ b then a+ c ≤ b+ c,

(OFb) If a, b ∈ F and a ≥ 0 and b ≥ 0 then ab ≥ 0.

Proposition 6.5. Let F be an ordered field.

(a) If a ∈ F and a > 0 then −a < 0.

(b) If a ∈ F and a ̸= 0 then a2 > 0.

(c) 1 ≥ 0.

(d) If a ∈ F and a > 0 then a−1 > 0.

(e) If a, b ∈ F and a ≥ 0 and b ≥ 0 then a+ b ≥ 0.

(f) If a, b ∈ F and 0 < a < b then b−1 < a−1.

Proof.

(a) Assume a ∈ F and a > 0.

Then a+ (−a) > 0 + (−a), by (OFb).

So 0 > −a, by (Fd) and (Fc).

(b) Assume a ∈ F and a ̸= 0.
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Case 1 : a > 0.

Then a · a > a · 0, by (OFb).

So a2 > 0, by part (a).

Case 2 : a < 0.

Then −a > 0, by part (a).

Then (−a)2 > 0, by Case 1.

So a2 > 0, by Proposition 6.4 (f).

(c) To show: 1 ≥ 0.

1 = 12 ≥ 0, by part (b).

(d) Assume a ∈ F and a > 0.

By part (b), a−2 = (a−1)2 > 0.

So a(a−1)2 > a · 0, by (OFb).

So a−1 > 0, by (Fh) and Proposition 6.4 (a).

(e) Assume a, b ∈ F and a ≥ 0 and b ≥ 0.

a+ b ≥ 0 + b, by (OFa),

≥ 0 + 0, by (OFa),

= 0, by (Fc).

(f) Assume a, b ∈ F and 0 < a < b.

So a > 0 and b > 0.

Then, by part (d), a−1 > 0 and b−1 > 0.

Thus, by (OFb), a−1b−1 > 0.

Since a < b, then b− a > 0, by (OFa).

So, by (OFb), a−1b−1(b− a) > 0.

So, by (Fh), a−1 − b−1 > 0.

So, by (OFa), a−1 > y−1.

Proposition 6.6. Let F be an ordered field and let x, y ∈ F with x ≥ 0 and y ≥ 0. Then

x ≤ y if and only if x2 ≤ y2.

Proof. Assume x, y ∈ S and x ≥ 0 and y ≥ 0.
To show: (a) If x ≤ y then x2 ≤ y2.

(b) If x2 ≤ y2 then x ≤ y.

(b) Assume x2 ≤ y2.

Adding (−x2) to each side and using (OFa) gives y2 + (−x2) ≥ x2 + (−x2) = 0.

So y2 − x2 ≥ 0.

Using Proposition 6.4(e) and axioms (Ff) and (Fi),

(y − x)(y + x) = yy + (−x)y + yx+ (−x)x = y2 + (−xy) + xy + (−xx)
= y2 + 0− x2 = y2 − x2.

So (y − x)(y + x) ≥ 0.
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By Proposition 6.5(e) and Proposition 6.5 (d),

since x ≥ 0 and y ≥ 0 then x+ y ≥ 0 and (x+ y)−1 > 0 (or x = 0 and y = 0).

So, by (OFb), (y − x)(y + x)(x+ y)−1 ≥ 0.

Using (Fg), then y − x ≥ 0.

Adding x to both sides and using (OFa) gives y ≥ x.

(a) Assume y ≥ x.

Then y − x ≥ 0.

Since y ≥ 0 and x ≥ 0 then, by (OFa), (y + x) ≥ y + 0 = y ≥ 0.

So, by (OFb), (y − x)(y + x) ≥ 0.

So y2 − x2 ≥ 0.

So y2 ≥ x2.

6.4.5 The power rule and the chain rule for the derivative

The first two of these proofs provide examples of proofs by induction.

There are different kinds of derivatives:

Derivative with respect to x Derivative with respect to g

d
dx

f df
dx

d
dg

f df
dg

The derivative d
dx satisfies The derivative d

dg satisfies

dx

dx
= 1,

dg

dg
= 1,

d(cf)

dx
= c

df

dx
, if c is a constant,

d(cf)

dg
= c

df

dg
, if c is a constant,

d(y + z)

dx
=

dy

dx
+

dz

dx
,

d(y + z)

dg
=

dy

dg
+

dz

dg
,

d(yz)

dx
= y

dz

dx
+

dy

dx
z.

d(yz)

dg
= y

dz

dg
+

dy

dg
z.

Proposition 6.7. If n ∈ Z≥0 then
dxn

dx
= nxn−1.

Proof. The base case n = 0:

d1

dx
=

d1 · 1
dx

= 1 · d1
dx

+
d1

dx
· 1 =

d1

dx
+

d1

dx
.
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Subtract d1
dx from each side to get 0 = d1

dx . So

dx0

dx
=

d1

dx
= 0 = 0x0−1.

The base case n = 1:. By definition of
d

dx
then

dx

dx
= 1. So

dx1

dx
=

dx

dx
= 1 = 1 · 1 = 1x0 = 1x1−1.

Induction step. Assume that if m,n ∈ Z≥0 and m < n then
dxm

dx
= mxm−1. Then

dxn

dx
=

x · xn−1

dx
= x

dxn−1

dx
+

dx

dx
· xn−1 = x(n− 1)xn−2 + 1 · xn−1 = (n− 1)xn−1 + xn−1 = nxn−1.

Hence, if n ∈ Z≥0 then
dxn

dx
= nxn−1.

Proposition 6.8. If n ∈ Z≥0 then
dgn

dx
= ngn−1 dg

dx
.

Proof. The base case n = 0:
dg0

dx
=

d1

dx
= 0 = 0g0−1 dg

dx
.

The base case n = 1: Since g0 = 1 then

dg

dx
= 1 · g0 dg

dx
.

Induction step. Assume that if m,n ∈ Z≥0 and m < n then
dgm

dx
= mgm−1 dg

dx
. Then

dgn

dx
=

g · gn−1

dx
= g

dgn−1

dx
+

dg

dx
· gn−1

= g(n− 1)gn−2 dg

dx
+ gn−1 dg

dx
= (n− 1)gn−1 dg

dx
+ gn−1 dg

dx
= ngn−1 dg

dx
.

Hence, if n ∈ Z≥0 then
dgn

dx
= ngn−1 dg

dx
.

Theorem 6.9. If p = c0 + c1g + c2g
2 + · · · with c0, c1, c2 . . . ∈ C then

dp

dx
=

dp

dg
· dg
dx

.

Proof. Assume p = c0 + c1g + c2g
2 + · · · with c0, c1, c2 . . . ∈ C.

To show:
dp

dx
=

dp

dg
· dg
dx

.
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Using Proposition 6.8,

dp

dx
=

d

dx
(c0 + c1g + c2g

2 + · · · )

=
dc0
dx

+
dc1g

dx
+

dc2g
2

dx
+

dc3g
3

dx
+ · · ·

= c0
d1

dx
+ c1

dg

dx
+ c2

dg2

dx
+ c3

dg3

dx
+ · · ·

= c0 · 0 + c1
dg

dx
+ c2 · 2g

dg

dx
+ c3 · 3g2

dg

dx
+ · · ·

=
(
c0 · 0 + c1 + c2 · 2g + c3 · 3g2 + · · ·

)dg
dx

=
dp

dg
· dg
dx

,

where the last line follows from Proposition 6.7.

6.4.6 Proof that sup(E) is unique

The following proof gives an example of a proof of uniqueness. The definitions of supremum and
infimum are examples of what are called ‘universal objectts’.

Let S be a set. A relation on S is a subset ∠ of S × S. If x, y ∈ ∠ write x∠y.

A poset, or partially ordered set, is a set with a relation ≤ on S such that

(a) If s, y, z ∈ S and x ≤ y and y ≤ z then x ≤ z. and

(b) If x, y ∈ S and x ≤ y and y ≤ x then x = y.

Let (S,≤) be a poset. Let E be a subset of S.

A supremum of E, or least upper bound of E, is sup(E) such that

(a) sup(E) ∈ S and sup(E) satisfies the condition: if x ∈ E then x ≤ sup(E), and

(b) If b ∈ S satisfies the condition: if x ∈ E then x ≤ b, then sup(E) ≤ b.

A infimum of E, or greatest lower bound of E, is inf(E) such that

(a) inf(E) ∈ S and inf(E) satisfies the condition: if x ∈ E then inf(E) ≤ x, and

(b) If b ∈ S satisfies the condition: if x ∈ E then x ≤ b, then b ≤ inf(E).

Proposition 6.10. Let P be a poset and let E ⊆ P . If sup(E) exists in P then sup(E) is unique.

Proof. Assume that E has a supremum in P .
Assume that sup1(E) ∈ P and sup2(E) are supremums of E in P .
To show: sup1(E) = sup2(E).
To show: (a) sup1(E) ≤ sup2(E).

(b) sup2(E) ≤ sup1(E).

(a) Since sup1(E) is a supremum of E the sup1(E) satisfies: if x ∈ E then x ≤ sup1(E).

So sup1(E) ≤ sup2(E).

(b) Since sup2(E) is a supremum of E the sup2(E) satisfies: if x ∈ E then x ≤ sup2(E).

So sup2(E) ≤ sup1(E).
So sup1(E) = sup2(E).
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6.4.7 Completing the square is the quadratic formula

Example 6.1. Let a, b, c ∈ C with a ̸= 0. Show that if ax2 + bx+ c = 0 then

x =
−b+ (b2 − 4ac)

1
2

2a
,

where the right hand side is actually a set of values since

(b2 − 4ac)
1
2 = {x ∈ C | x2 = b2 − 4ac}.

Proof. Let a, b, c ∈ C. Then

ax2 + bx+ c = a(x2 +
b

a
x+

c

a
) = a

(
x2 + 21

2

b

a
+
(
1
2

b

a

)2
+
( c
a
−
(
1
2

b

a

)2))
= a

((
x+

b

2a

)2
+
( c
a
−
(
1
2

b

a

)2))
= a

((
x+

b

2a

)2 − (b2 − 4ac

4a2
))

.

Hence, if ax2 + bx+ c = 0 and a ̸= 0 then

0 = a
((

x+
b

2a

)2 − (b2 − 4ac

4a2
))

, which gives 0 =
(
x+

b

2a

)2 − (b2 − 4ac

4a2
)
.

So
b2 − 4ac

4a2
=
(
x+

b

2a

)2
, which gives

(b2 − 4ac

4a2

) 1
2
= x+

b

2a
.

So
(b2 − 4ac)

1
2

2a
= x+

b

2a
, which gives x =

−b+ (b2 − 4ac)
1
2

2a
.
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6.4.8 Binomial theorem proof

Theorem 6.11. Let n, k ∈ Z≥0 with k ∈ {0, 1, . . . , n}. Assume xy = yx.

(a) If k ∈ {1, . . . , n− 1} then(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
, and

(
n

0

)
= 1 and

(
n

n

)
= 1.

(b)
(
n
k

)
is the coefficient of xn−kyk in (x+ y)n.

(c) Let S be a set with cardinality n.
Then

(
n
k

)
is the number of subsets of S with cardinality k.

(d) e(x+y) = exey.

Proof. (a)
(
n
0

)
= n!

0!(n−0)! =
n!
1·n! = 1 and

(
n
n

)
= n!

n!(n−n)! =
n!
n!0! =

n!
n!·1 = 1.

If k ∈ {1, . . . , n− 1} then(
n− 1

k − 1

)
+

(
n− 1

k − 1

)
=

(n− 1)!

(k − 1)!(n− 1− (k − 1))!
+

(n− 1)!

k!(n− 1− k)!

=
(n− 1)!

(k − 1)!(n− 1− k)!

( 1

n− k
+

1

k

)
=

(n− 1)!

(k − 1)!(n− 1− k)!

n

k(n− k)
=

n!

k!(n− k)!
=

(
n

k

)
.

(b) The base cases are

(x+ y)0 = 1 =

(
0

0

)
x0y0 and (x+ y)1 = x+ y =

(
1

0

)
x1y0 +

(
1

1

)
x0y1.

Then, by induction,

(x+ y)n = (x+ y)n−1(x+ y)

=
((n− 1

0

)
xn−1y0 +

(
n− 1

1

)
xn−2y1 + · · ·+

(
n− 1

n− 2

)
x1yn−2 +

(
n− 1

n− 1

)
x0yn−1

)
(x+ y)

=

(
n− 1

0

)
xny0 +

(
n− 1

1

)
xn−1y1 + · · ·+

(
n− 1

n− 2

)
x2yn−2 +

(
n− 1

n− 1

)
x1yn−1

+

(
n− 1

0

)
xn−1y1 + · · ·+

(
n− 1

n− 2

)
x1yn−1 +

(
n− 1

n− 1

)
x0yn

=

(
n

0

)
xny0 +

(
n

1

)
xn−1y1 + · · ·+

(
n

n− 1

)
x1yn−1 +

(
n

n

)
x0yn,

where the last equality follows from part (a).

(c) Since

(x+ y)n = (x+ y) · · · (x+ y)︸ ︷︷ ︸
n factors

=
n∑

k=0

∑
J⊆{1,...,n}
Card(J)=k

( ∏
i∈{1,...,n}

i ̸∈J

x
)( ∏

j∈{1,...,n}
j∈J

y
)

=
n∑

k=0

Card({J ⊆ {1, . . . , n} | Card(J) = k})xn−kyk,
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the coefficient of xn−kyk is the number of ways of choosing k factors (each of which comtributes a y
to xn−kyk) from the n factors in (x+ y) · · · (x+ y) = (x+ y)n.

(d)

e(x+y) = 1 + (x+ y) +
1

2!
(x+ y)2 +

1

3!
(x+ y)3 + · · ·

=

1
+(x+ y)

+ 1
2!(x

2 + 2xy + y2)
+ 1

3!(x
3 + 3x2y + 3xy2 + y3)

+ 1
4!(x

4 + 4x3y + 6x2y2 + 4xy3 + y4)
+ 1

5!(x
5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5)

...

=

1
+x+ y

+ 1
2!x

2 + xy + 1
2!y

2

+ 1
3!x

3 + 1
2!x

2y + x 1
2!y

2 + 1
3!y

3

+ 1
4!x

4 + 1
3!x

3y + 1
2!x

2 1
2!y

2 + x 1
3!y

3 + 1
4!y

4

+ 1
5!x

5 + 1
4!x

4y + 1
3!x

3 1
2!y

2 + 1
2!x

2 1
3!y

3 + x 1
4!y

4 + 1
5!y

5

...

= ex + exy + ex
1

2!
y2 + ex

1

3!
y3 + · · ·

= exey,

where the next to last equality follows by adding up the diagonals.
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7 Some fun lectures

7.1 Numbers, functions, inverse functions and the exponential

7.1.1 Numbers

The positive integers are 1, 2, 3, 4, 5, 6, . . ..

The nonnegative integers are 0, 1, 2, 4, 5, 6, . . ..

The rational numbers are

a

b
, a an integer, b an integer, b ̸= 0.

The real numbers are all possible decimal expansions.

The complex numbers are a + bi, where a and b are real numbers and i is a number such that
i2 = −1.

7.1.2 Functions

A function is a creature that eats a number, chews on it, and spits out a new number.

numbers

f

x f(x) numbers

What a function spits out depends only on what goes in.

Example. The function f(x) = x2 has

x2

−3 (−3)2 = 9 and

x2

3 32 = 9

7.1.3 Inverse ‘function’s

A function is a creature that eats a number, chews on it, and spits out a new number.

numbers

f

x f(x) numbers

What a function spits out depends only on what goes in.
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The inverse ‘function’ to a function f is backwards of f . The inverse ‘function’ undoes what f did.

numbers

f−1

f(x) x numbers

The inverse ‘function’ is usually not a function because what it spits out depends on its mood. For
example: √

x is the inverse ‘function’ to x2

and √
9 = 3 on good Mondays, and

√
9 = −3 on bad Tuesdays.

√
x

9 −3? or 3? make up your mind!

7.1.4 The exponential and the log

If n is a positive integer then n-factorial is

n! = 1 · 2 · 3 · · · (n− 1) · n.

The exponential

ex = 1 + x+ 1
2!x

2 + 1
3!x

3 + · · · is the most important function in mathematics.

If n is a positive integer then
an = a · a · a · · · a︸ ︷︷ ︸

n factors

.

This satisfies
ax+y = axay and a1 = a,

which forces
ax = ex log(a), where log(a) is the number such that elog(a) = a.
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7.2 The binomial theorem

Let k ∈ Z≥0. Define k factorial by

0! = 1 and k! = k · (k − 1) · · · 3 · 2 · 1 if k ∈ Z>0.

Let n, k ∈ Z≥0 with k ≤ n. Define (
n

k

)
=

n!

k!(n− k)!
.

Theorem 7.1. Let n, k ∈ Z≥0 with k ≤ n.

(a) Let S be a set with cardinality n. Then(
n
k

)
is the number of subsets of S with cardinality k.

(b)
(
n
k

)
is the coefficient of xn−kyk in (x+ y)n.

(c) If k ∈ {1, . . . , n− 1} then(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
, and

(
n

0

)
= 1 and

(
n

n

)
= 1.

This theorem says that the table of numbers (
0
0

)(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
. . .

...
. . .

are the numbers in Pascal’s triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
. . .

...
. . .

and that
(x+ y)0 = 1,
(x+ y)1 = x+ y,
(x+ y)2 = x2 + 2xy + y2,
(x+ y)3 = x3 + 3x2y + 3xy2 + y3,
(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4,
(x+ y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5,

...
...
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7.3 Partial fractions is backwards of common denominator

Partial fractions is the name for the backward of making a common denominator.

5x+ 22

(x+ 2)(x+ 6)
=

3

x+ 2
+

2

x+ 6
or

31

33
=

3

11
+

2

3
.

A better terminology for partial fractions might be ‘rotanimoned nommoc’ (backwards of ‘common
denominator’).

Splitting.

If 1 = pr + qs then
1

pq
=

r

q
+

s

p
and

a

pq
=

ar

q
+

as

p
.

Powers.. Suppose a1, a2, a3 are not divisible by p.

a1p
2 + a2p+ a3

p3
=

a1
p

+
a2
p2

+
a3
p3

.

Remainders.
If a = bq + r then

a

q
= b+

r

q
.

HW: Find a, b such that
2x4 + 3x2

(x2 + 1)2(x2 + 2)
=

a

(x2 + 1)2
+

b

x2 + 2
.

HW: Find a, b, c such that
3x2 − 2x+ 1

(x+ 1)(x2 + 2x+ 2)
=

a

x+ 1
− b(2x+ 2)

x2 + 2x+ 2
− c

(x+ 1)2 + 1
.

HW: Find a, b such that
9x+ 1

(x− 3)(x+ 1)
=

a

x− 3
+

b

x+ 1
.

HW: Find a, b, c such that
4

x2(x+ 2)
=

a

x+ 2
+

b

x
+

c

x2
.
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7.4 Derivatives

A function eats a number, chews on it, and spits out another number.

numbers

f

x f(x) numbers

A constant function always spits out the same number, no matter what the input is.

Example: f(x) = 2.

numbers

f

x 2 numbers

We call this function 2;

f

x 2 is

2
x 2

So, 2 sometimes means the number 2, and sometimes means the function 2.

A derivative eats a function, chews on it, and spits out another function.

functions

d
dx

f df
dx functions

The derivative
d

dx
knows what to spit out by always following the rules:

(1)
dx

dx
= 1,

(2)
d(cf)

dx
= c

df

dx
, if c is a constant,

(3)
d(f + g)

dx
=

df

dx
+

dg

dx
,

(4)
d(fg)

dx
= f

dg

dx
+

df

dx
g.

Example 7.1. Prove that
d1

dx
= 0.
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Example 7.2. Find
dy

dx
if y = x2.

Example 7.3. Find
dy

dx
if y = x3.

Example 7.4. Find
dy

dx
if y = x4.

. . . and we keep on going . . .

Example 7.5. Find
dy

dx
if y = x6342.

. . . and we keep on going . . .

Example 7.6. Find
dxn

dx
for n ∈ {1, 2, 3, . . .}.

Example 7.7. Find
dx−6342

dx
.

Example 7.8. Find
dx−n

dx
for n ∈ {1, 2, 3, . . .}.

... and thus we have found
dxn

dx
= nxn−1, for all integers n. (AMAZING!)

There are different kinds of derivatives:

Derivative with respect to x Derivative with respect to g

d
dx

f df
dx

d
dg

f df
dg

The derivative d
dx satisfies The derivative d

dg satisfies

dx

dx
= 1,

dg

dg
= 1,

d(cf)

dx
= c

df

dx
, if c is a constant,

d(cf)

dg
= c

df

dg
, if c is a constant,

d(y + z)

dx
=

dy

dx
+

dz

dx
,

d(y + z)

dg
=

dy

dg
+

dz

dg
,

d(yz)

dx
= y

dz

dx
+

dy

dx
z.

d(yz)

dg
= y

dz

dg
+

dy

dg
z.

What is the relation between
df

dx
and

df

dg
?
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dg0

dg
=

d1

dg
= 0,

dg0

dx
=

d1

dx
= 0,

dg

dg
= 1,

dg

dx
=

dg

dx
,

dg2

dg
=

dg · g
dg

dg2

dx
=

dg · g
dx

= g
dg

dg
+

dg

dg
g = g

dg

dx
+

dg

dx
g

= g + g = 2g, = 2g
dg

dx
,

dg3

dg
=

dg2 · g
dg

dg3

dx
=

dg2 · g
dx

= g2
dg

dg
+

dg2

dg
g = g2

dg

dx
+

dg2

dx
g

= g2 + 2g · g = 3g2, = g2
dg

dx
+ 2g

dg

dx
g

= g2
dg

dx
+ 2g2

dg

dx

= 3g2
dg

dx
,

dg4

dg
=

dg3 · g
dg

dg4

dx
=

dg3 · g
dx

= g3
dg

dg
+

dg3

dg
g = g3

dg

dx
+

dg3

dx
g

= g3 + 3g2 · g = 4g3, = g3
dg

dx
+ 3g2

dg

dx
g

= g3
dg

dx
+ 3g3

dg

dx

= 4g3
dg

dx
,

...
...

dg6342

dg
= 6342g6341,

dg6342

dx
= 6342g6341

dg

dx
,

d(3g2 + 2g + 7)

dg
=

d(3g2)

dg
+

d(2g)

dg
+

d7

dg

d(3g2 + 2g + 7)

dx
=

d(3g2)

dx
+

d(2g)

dx
+

d7

dx

= 3
dg2

dg
+ 2

dg

dg
+ 0 = 3

dg2

dx
+ 2

dg

dx
+ 0

= 3 · 2g + 2 · 1 = 3 · 2g dg
dx

+ 2
dg

dx

= 6g + 2, = (6g + 2)
dg

dx
,

Thus, we are seeing that

df

dx
=

df

dg

dg

dx
, which is the chain rule.
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7.5 Limits

Write
lim
x→2

f(x) = 10

if f(x) gets closer and closer to 10 as x gets closer and closer to 2.

Example: Evaluate lim
x→2

3x2 + 8

x2 − x
.

When x = 1.5,
3x2 + 8

x2 − x
= 19.66....

When x = 1.9,
3x2 + 8

x2 − x
= 11.011....

When x = 1.99,
3x2 + 8

x2 − x
= 10.091....

When x = 1.999,
3x2 + 8

x2 − x
= 10.00901....

When x = 1.9999,
3x2 + 8

x2 − x
= 10.0009001....

So lim
x→2

3x2 + 8

x2 − x
= 10.

Usually determining the limit is straightforward.

Example 7.9. lim
x→1

6x2 − 4x+ 3 = 5.

But sometimes ...

Example: lim
x→0

√
1 + x− 1

x

?
=

0

0
.

0

0
MAKES NO SENSE.

Example: lim
x→0

5x

x

?
=

0

0
.

lim
x→0

5x

x
= lim

x→0
5 = 5.

Example: lim
x→0

17x

2x

?
=

0

0
.

lim
x→0

17x

2x
= lim

x→0

17

2
=

17

2
.

Let’s go back to

Example: lim
x→0

√
1 + x− 1

x

?
=

0

0
.
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lim
x→0

√
1 + x− 1

x
= lim

x→0

√
1 + x− 1

x
· (
√
1 + x+ 1)

(
√
1 + x+ 1)

= lim
x→0

1 + x− 1

x(
√
1 + x+ 1)

= lim
x→0

x

x(
√
1 + x+ 1)

= lim
x→0

1√
1 + x+ 1

=
1√

1 + 0 + 1
=

1

2
.

So, whenever a limit looks like it is coming out to 0
0 it needs to be looked at in a different way to see

what it is really getting closer and closer to.

Example 7.10. Evaluate lim
x→7

x2 − 49

x− 7
.

Example 7.11. Evaluate lim
x→5

x5 − 3125

x− 5
.

Example 7.12. Evaluate lim
x→a

x5/2 − a5/2

x− a
.

Particularly useful limits

Example 7.13. Evaluate lim
x→0

sin(x)

x
.

Example 7.14. Evaluate lim
x→0

cos(x)− 1

x
.

Example 7.15. Evaluate lim
x→0

ex − 1

x
.

Example 7.16. Evaluate lim
x→0

log(1 + x)

x
.

Example 7.17. Evaluate lim
x→0

(1 + x)1/x.

Note: n→∞ means as n gets larger and larger.

Example 7.18. Evaluate lim
n→∞

(1 + 1
n)

n.

Example 7.19. Evaluate lim
x→π

sin(x)

x− π
.

Example 7.20. Evaluate lim
x→∞

x2 − 7x+ 11

3x2 + 10
.

Example 7.21. Evaluate lim
x→0

sin(3x)

sin(5x)
.

Example 7.22. Evaluate lim
x→1

1− x

(cos−1(x))2
.

Example 7.23. Evaluate lim
∆x→0

f(x+∆x)− f(x)

∆x
when f(x) = sin(2x).

Example 7.24. Evaluate lim
∆x→0

f(x+∆x)− f(x)

∆x
when f(x) = cos(x2).

Example 7.25. Evaluate lim
∆x→0

f(x+∆x)− f(x)

∆x
when f(x) = xx.
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7.5.1 Limits and derivatives

Example 7.26. (The fundamental theorem of change) For a smooth continuous function f : R → R
let

Df (x) = lim
h→0

f(x+ h)− f(x)

h
.

So that Df (a) is the slope of f at x = a (the rate of change of f with respect to x at x = a).
Let c be a constant and let f and g be functions and assume that Df and Dg exist. Show that

(a) Dx = 1,

(b) Dcf = cDf ,

(c) Df+g = Df +Dg,

(d) Dfg = Df · g + f ·Dg.

Example 7.27. (The fundamental theorem of measure) For a, b ∈ R with p < a < b and a smooth
continuous function f : R→ R let

∫ b

a
f dx = lim

h→0

( ⌊ b−a
h

⌋∑
j=0

f(a+ jh)h
)

If f : R→ R≥0 then
∫ b
a f dx is the area under f between x = a and x = b.

Let p ∈ R with p < a < b and let A : R[p,b] → R≥0 be the function given by

A(x) =

∫ x

p
f dx.
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Then

lim
h→0

A(x+ h)−A(x)

h
= f(x) and A(b)−A(a) =

∫ b

a
f dx.
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7.6 Calculus, Functions and inverse functions

Calculus is the study of

(1) Derivatives (3) Applications of derivatives
(2) Integrals (4) Applications of integrals

A derivative is a creature you put a function into, it chews on it, and spits out a new function.

f → d

dx
→ df

dx
.

The integral is the derivative backwards:

f ←
∫

dx ← df

dx
or

df

dx
→

∫
dx → f.

A function is one down on the food chain.

input
number

x
→ f →

output
number
f(x)

Functions take a number as input, chew on it a bit, and spit out a new number.

The inverse function to f is f backwards:

x← f−1 ← f(x) or
f(x)→

z →
f−1

→ x

→ f−1(z)

Example.

The inverse function is

x→

1→

2→

3→

−3→

π →
√
7→

f(x) = x2

→ x2

→ 1

→ 4

→ 9

→ 9

→ π2

→ 7

x2 →

1→

4→

9→

9→

π2 →

7→

f−1(x) =
√
x

→ x

→ 1

→ 2

→ 3

→ −3

→ π

→
√
7

The inverse function is not always a function because there might be some uncertainty about what
the inverse function will spit out:

9→ f−1(x) =
√
x → 3 or 9→ f−1(x) =

√
x → −3.

Numbers are at the very bottom of the food chain.
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7.6.1 And so we discovered ... Numbers

At some point humankind wanted to count things and discovered the positive integers,

1, 2, 3, 4, 5, . . . .

GREAT for counting something,

BUT what if you don’t have anything? How do we talk about nothing, nulla, zilch?

. . . and so we discovered the nonnegative integers,

0, 1, 2, 3, 4, 5, . . . .

GREAT for adding,
5 + 3 = 8, 0 + 10 = 10, 21 + 37 = 48,

BUT not so great for subtraction,

5− 3 = 2, 2− 0 = 2, 12− 34 =???.

. . . and so we discovered the integers

. . . ,−3, −2, −1, 0, 1, 2, 3, . . . .

GREAT for adding, subtracting and multiplying,

3 · 6 = 18, −3 · 2 = −6, 0 · 7 = 0,

BUT not so great if you only want part of the sausage . . .,

. . . and so we discovered the rational numbers,

a

b
, a an integer, b an integer, b ̸= 0.

GREAT for addition, subtraction, multiplication, and division,

BUT not so great for finding
√
2 =????,

. . . and so we discovered the real numbers,

all decimal expansions.

Examples:
π = 3.1415926 . . . ,
e = 2.71828 . . . ,√
2 = 1.414 . . . ,
10 = 10.0000 . . . ,

1
3 = .3333 . . . ,
1
8 = .125 = .125000000 . . . ,

GREAT for addition, subtraction, multiplication, and division,

BUT not so great for finding
√
−9 =????,

. . . and so we discovered the complex numbers,

a+ bi, a a real number, b a real number, i =
√
−1.
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7.6.2 Operations on complex numbers

Examples of complex numbers: 3 +
√
2i, 6 = 6 + 0i, π +

√
7i,

and √
−9 =

√
9(−1) =

√
9
√
−1 = 3i.

GREAT.

Addition: (3 + 4i) + (7 + 9i) = 3 + 7 + 4i+ 9i = 10 + 13i.

Subtraction: (3 + 4i)− (7 + 9i) = 3− 7 + 4i− 9i = −4− 5i.

Multiplication:

(3 + 4i)(7 + 9i) = 3(7 + 9i) + 4i(7 + 9i)

= 21 + 27i+ 28i+ 36i2

= 21 + 55i− 36

= −15 + 55i.

Division:

3 + 4i

7 + 9i
=

(3 + 4i)

(7 + 9i)

(7− 9i)

(7− 9i)
=

21− 27i+ 28i+ 36

49− 63i+ 63i+ 81

=
57 + i

130
=

57

130
+

1

130
i.

Square Roots: We want
√
−3 + 4i to be some a+ bi.

If
√
−3 + 4i = a+ bi

then

−3 + 4i = (a+ bi)2 = a2 + abi+ abi+ b2i2

= a2 − b2 + 2abi.

So
a2 − b2 = −3 and 2ab = 4.

Solve for a and b.

b =
4

2a
=

2

a
. So a2 −

(2
a

)2
= −3.

So a2 − 4

a2
= −3.

So a4 − 4 = −3a2.
So a4 + 3a2 − 4 = 0.

So (a2 + 4)(a2 − 1) = 0.

So a2 = −4 or a2 = 1.

So a = ±1, and b = 2
±1 = 2 or −2.

So a+ bi = 1 + 2i or a+ bi = −1− 2i.

So
√
−3 + 4i = ±(1 + 2i).
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Graphing:

Really, the i-axis and not-i-axis should be properly labeled

Factoring:

x2 + 5 = (x+
√
5 i)(x−

√
5 i),

x2 + x+ 1 =
(
x−

(
− 1

2 +
√
3
2 i
))(

x−
(
− 1

2 −
√
3
2 i
))

This is REALLY why we like the complex numbers.

The fundamental theorem of algebra says that ANY POLYNOMIAL

(for example, x12673 + 2563x159 + πx121 +
√
7x23 + 96211

2)

can be factored completely as
(x− u1)(x− u2) · · · (x− un)

where u1, u2, . . . , un are complex numbers.
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7.7 The interest sequence

Example. If you borrow $500 on your credit card at 14% interest, find the amounts due at the end
of two years if the interest is compounded

(a) annually,

(b) quarterly,

(c) monthly,

(d) daily,

(e) hourly,

(f) every second,

(g) every nanosecond,

(h) continuously.

(a) You owe

500 + 500(.14) = 500(1 + .14) after one year and 500(1 + .14)(1 + .14) after two years.

(b) You owe

500 + 500
( .14
12

)
= 500

(
1 +

.14

12

)
after one month.

You owe

500
(
1 +

.14

12

)(
1 +

.14

12

)
after two months.

You owe

500
(
1 +

.14

12

)24
after two years.

(f) You owe

500 + 500
( .14

365 · 24 · 3600

)
after one second.

and

500
(
1 +

.14

365 · 24 · 3600

)2·365·24·3600
after two years.

In fact,

lim
n→∞

500
(
1 +

.14

n

)2n
= 500 lim

n→∞

(
elog

(
1+ .14

n

))2n
= 500 lim

n→∞
e2n log

(
1+ .14

n

)
= 500 lim

n→∞
e
2·.14 log(1+ .14

n )

.14
n

= 500 lim
n→∞

e
.28

log(1+ .14
n )

.14
n = 500e.28,

since

lim
x→0

log(1 + x)

x
= 1.

So you owe 500e.28 after two years if the interest is compounded continuously.

Note: 500(1 + .14)2 = 649.80, 500
(
1 + .14

12

)24
≈ 660.49, and 500e.28 ≈ 661.58.
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7.8 Limits

The tolerance set is
E = {10−1, 10−2, . . .}.

For n ∈ Z>0 define d : Rn × Rn → R≥0

d(x, y) =
√

(y1 − x1)2 + · · ·+ (yn − xn)2, if x = (x1, . . . , xn) and y = (y1, . . . , yn).

Let m,n ∈ Z>0 and let f : Rm → Rn. Let a ∈ Rm and ℓ ∈ Rn.

lim
x→a

f(x) = ℓ means

if ε ∈ E then there exists δ ∈ E such that if 0 < d(x, a) < δ then d(f(x), ℓ) < ε.

Here is a translation into the language of “English”:

In English In Math
The client has a machine f Let f : X → R and let ℓ ∈ R.
that produces steel rods of length ℓ for sales.

The output of f gets closer and closer to ℓ lim
x→a

f(x) = ℓ means

as the input gets closer and closer to a
means

if you give me a tolerance the client needs, if ε ∈ E
in other words,
the number of decimal places of accuracy
the client requires

then my business will tell you then there exists

the accuracy you need on the dials of the machine δ ∈ E such that
so that

if the dials are set within δ of a if 0 < d(x, a) < δ

then the output of the machine then d(f(x), ℓ) < ϵ.
will be within ε of ℓ.

Let n ∈ Z>0 and let a1, a2, . . . be a sequence in Rn. Let ℓ ∈ R.

lim
n→∞

an = ℓ means

if ε ∈ E then there exists N ∈ Z>0 such that if n ∈ Z≥N then d(an, ℓ) < ε.
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7.9 Formula 1

Let D = d
dx so that D2f = d2f

dx2 and D7f = d7f
dx7 . Then

f(x) = f(a) + (Df)(a)(x− a) +
1

2!
(D2f)(a)(x− a)2 +

1

3!
(D3f)(a)(x− a)3 + · · · .

If a = 0 then

f(x) = f(0) + (Df)(0)x+
1

2!
(D2f)(0)x2 +

1

3!
(D3f)(0)x3 + · · · .

So if we want to find the series expansion for ex then

ex = e0 +
(dex
dx

)
(0)x+

1

2!

(d2ex
dx2

)
(0)x2 +

1

3!

(d3ex
dx3

)
(0)x3 + · · ·

= e0 + (ex)(0)x+
1

2!
(ex)(0)x2 +

1

3!
(ex)(0)x3 + · · ·

= e0 + e0x+
1

2!
e0x2 +

1

3!
e0x3 + · · ·

= 1 + x+
1

2!
x2 +

1

3!
x3 + · · ·

If we want to find

lim
x→0

ex − 1

x
= lim

x→0

(
1 + x+ 1

2!x
2 + 1

3!x
3 + · · ·+ 1

4!x
4 + · · ·

)
− 1

x

= lim
x→0

x+ 1
2!x

2 + 1
3!x

3 + · · ·+ 1
4!x

4 + · · ·
x

= lim
x→0

1 +
1

2!
x+

1

3!
x2 + · · ·+ 1

4!
x3 + · · ·

= 1 + 0 + 0 + 0 + · · ·
= 1.

If we want to find the series expansion for sin(x) then

sin(x) = sin(0) +
(d sin(x)

dx

)
(0)x+

1

2!

(d2 sin(x)
dx2

)
(0)x2 +

1

3!

(d3 sin(x)
dx3

)
(0)x3 ++

1

4!

(d4 sin(x)
dx4

)
(0)x4 + · · ·

= sin(0) + cos(0)x+
1

2!
(− sin(0))x2 +

1

3!
(− cos(0))x3 +

1

4!
(sin(0))x4 + · · ·

= 0 + x− 0− 1

3!
x3 + 0 +

1

5!
x5 − 0− 1

7!
x7 + 0 + · · ·

= x−− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + · · · .

If we want to find

lim
x→0

sin(x)

x
= lim

x→0

x−− 1
3!x

3 + 1
5!x

5 − 7!x
7 + · · ·

x

= lim
x→0

(
1−− 1

3!
x2 +

1

5!
x4 −

7!
x6 + · · ·

)
= 1− 0 + 0− 0 + 0− · · ·
= 1.
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If we want to find the series expansion for 1
1−x then

1

1− x
=

1

1− x

]
x=0

+
(d 1

1−x

dx

]
x=0

)
x+

1

2!

(d2 1
1−x

dx2

]
x=0

)
x2 +

1

3!

(d3 1
1−x

dx3

]
x=0

)
x3 + · · ·

= 1 +
( 1

(1− x)2

]
x=0

)
x+

1

2!

( 2

(1− x)3

]
x=0

)
x2 +

1

3!

( 3 · 2
(1− x)4

]
x=0

)
x3 + · · ·

= 1 + x+ x2 + x3 + x4 + x5 + · · · .

If we want to find the series expansion for 1
1+x then

1

1 + x
=

1

1− (−x)
= 1 + (−x) + (−x)2 + (−x)3 + (−x)4 + · · ·

= 1− x+ x2 − x3 + x4 − x5 + · · · .

If we want to find the series expansion for log(1 + x) then∫
1

1 + x
dx = log(1 + x)

=

∫ (
1− x+ x2 − x3 + x4 − x5 + · · ·

)
dx

= x− 1

2
x2 +

1

3
x3 − 1

4
x4 +

1

5
x5 − 1

6
x6 + · · · .

So, in particular,

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ · · · = log(1 + 1) = log(2).

Also

lim
x→0

log(1 + x)

x
= lim

x→0

x− 1
2x

2 + 1
3x

3 − 1
4x

4 + 1
5x

5 − 1
6x

6 + · · ·
x

= lim
x→0

(
1− 1

2
x+

1

3
x2 − 1

4
x3 +

1

5
x4 − 1

6
x5 + · · ·

)
= 1− 0 + 0− 0 + · · ·
= 1.

If we want to find the series expansion for tan−1(x) then

tan−1(x) =

∫
1

1 + x2
dx

=

∫ (
1− x2 + x4 − x6 + x8 − · · ·

)
dx

= x− 1

3
x3 +

1

5
x5 − 1

7
x7 +

1

9
x9 − 1

11
x11 + · · ·

If we want to find π then

π = 4 ·
(
π
4

)
= 4 tan−1(1)

= 4
(
1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · ·

)
= 4− 4

3
+

4

5
− 4

7
+

4

9
− 4

11
+

4

13
− · · ·

)
.
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7.10 Series expansions and derivatives

The derivative of f with respect to x is
df

dx
. It is common to write f ′(x) in place of

df

dx
.

f ′(x) =
df

dx
.

The second derivative of f with respect to x is

f ′′(x) =
d2f

dx2
=

d

dx

(
df

dx

)
,

the derivative of the derivative of f . Both
d2f

dx2
and f ′′(x) are notations for the same thing, the second

derivative of f .

The third derivative of f with respect to x is

f ′′′(x) =
d3f

dx3
=

d

dx

(
d2f

dx2

)
,

the derivative of the second derivative of f . Use the notations
d3f

dx3
and f ′′′(x) interchangeably for the

third derivative of f .

The fourth derivative of f with respect to x is

f (4)(x) =
d4f

dx4
=

d

dx

(
d3f

dx3

)
,

the derivative of the third derivative of f .

Let a be a number. Then f evaluated at a is

f(a) = f
∣∣
x=a

= c0 + c1a+ c2a
2 + c3x

3 + · · · ,

if f(x) = c0 + c1x + c2x
2 + c3x

3 + · · · . Use both notations, f(a) and f
∣∣
x=a

, interchangeably, for f
evaluated at a.

Example: If f(x) = 7x3 + 3x2 + 5x+ 12 and a = 3 then

f(3) = 7 · 33 + 3 · 32 + 5 · 3 + 12 = 8 · 33 + 27 = 9 · 33 = 35,

f
∣∣
x=3

= 7 · 33 + 3 · 32 + 5 · 3 + 12 = 8 · 33 + 27 = 9 · 33 = 35.

df

dx
= 21x2 + 6x+ 5,

f ′ = 21x2 + 6x+ 5,

d2f

dx2
= 42x+ 6,

f ′′ = 42x+ 6,

d3f

dx3
= 42,

f ′′′ = 42,

d4f

dx4
= 0,

f (4) = 0,

df

dx

∣∣∣
x=3

= 21 · 32 + 6 · 3 + 5 = 189 + 23 = 202,

f ′(3) = 21 · 32 + 6 · 3 + 5 = 189 + 23 = 202,

d2f

dx2

∣∣∣
x=3

= 42 · 3 + 6 = 132,

f ′′(3) = 42 · 3 + 6 = 132,

d3f

dx3

∣∣∣
x=3

= 42,

f ′′′(3) = 42,

d4f

dx4

∣∣∣
x=3

= 0,

f (4)(3) = 0.
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Series expansions and the limit formula for the derivative

If f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + c4(x− a)4 + c5(x− a)5 + · · ·

then

f(a) = c0,

df

dx

∣∣∣
x=a

=
(
c1 + 2c2(x− a) + 3c3(x− a)2 + 4c4(x− a)3 + 5c5(x− a)4 + · · ·

)∣∣∣
x=a

= c1,

d2f

dx2

∣∣∣
x=a

=
(
2c2 + 3 · 2c3(x− a) + 4 · 3c4(x− a)2 + 5 · 4c5(x− a)3 + · · ·

)∣∣∣
x=a

= 2c2,

d3f

dx3

∣∣∣
x=a

=
(
3 · 2c3 + 4 · 3 · 2c4(x− a) + 5 · 4 · 3c5(x− a)2 + 6 · 5 · 4c6(x− a)3 + · · ·

)∣∣∣
x=a

= 3 · 2c3,

d4f

dx4

∣∣∣
x=a

=
(
4 · 3 · 2c4 + 5 · 4 · 3 · 2c5(x− a) + 6 · 5 · 4 · 3c4(x− a)2 + · · ·

)∣∣∣
x=a

= 4 · 3 · 2c4,

and we can continue this process to find

dkf

dxk

∣∣∣
x=a

= k! ck, for k = 1, 2, 3, . . ..

Dividing both sides by k! gives

ck =
1

k!

(
dkf

dxk

∣∣∣
x=a

)
.

So

f(x) = f(a) +

(
df

dx

∣∣∣
x=a

)
(x− a) +

1

2!

(
d2f

dx2

∣∣∣
x=a

)
(x− a)2 +

1

3!

(
d3f

dx3

∣∣∣
x=a

)
(x− a)3 + · · · ,

or, equivalently,

f(x) = f(a) + f ′(a)(x− a) +
1

2!
f ′′(a)(x− a)2 +

1

3!
f ′′′(a)(x− a)3 +

1

4!
f (4)(a)(x− a)4 + · · · .

Now subtract f(a) from both sides:

f(x)− f(a) = f ′(a)(x− a) +
1

2!
f ′′(a)(x− a)2 +

1

3!
f ′′′(a)(x− a)3 +

1

4!
f (4)(a)(x− a)4 + · · · .

Divide both sides by x− a.

f(x)− f(a)

x− a
= f ′(a) +

1

2!
f ′′(a)(x− a) +

1

3!
f ′′′(a)(x− a)2 +

1

4!
f (4)(a)(x− a)3 + · · · .

Evaluate both sides at x = a.

f(x)− f(a)

x− a

∣∣∣
x=a

= f ′(a) + 0 + 0 + 0 + 0 + · · · .
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So f ′(a) =
f(x)− f(a)

x− a

∣∣∣
x=a

.

Let x = a+ h. Then f ′(a) =
f(a+ h)− f(a)

a+ h− a

∣∣∣
a+h=a

.

So
df

dx

∣∣∣
x=a

=
f(a+ h)− f(a)

h

∣∣∣
h=0

.

Another way to write this is
df

dx

∣∣∣
x=a

= lim
h→0

f(a+ h)− f(a)

h
.

Example: Suppose you want to know what f I’m thinking of and I refuse to tell you.

You ask me what f(0) is and I say “6”.

You ask me what f ′(0) is and I say “10”.

You ask me what f ′′(0) is and I say “31”.

You ask me what f ′′′(0) is and I say “5”.

You ask me what f (4)(0) is and I say “7”.

You ask me what f (5)(0) is and I say “0”.

You ask me what f (6)(0) is and I say “0”.

You ask me what f (7)(0) is and I say “0, they are all coming out to 0 now.”.

At this point you win because you know that

f(x) = f(0) + f ′(0)(x− 0) +
1

2!
f ′′(0)(x− 0)2 +

1

3!
f ′′′(0)(x− 0)3 + · · ·

= 6 + 10(x− 0) +
1

2!
31(x− 0)2 +

1

3!
5(x− 0)3 +

1

4!
7(x− 0)4

+
1

5!
· 0(x− 0)5 +

1

6!
· 0(x− 0)6 +

1

7!
· 0(x− 0)7 + 0 + 0 + · · ·

= 6 + 10x+
31

2
x2 +

5

6
x3 +

7

24
x4,

and so you have found out what f is.

Example: Suppose you want to know what f I’m thinking of and I refuse to tell you.

You ask me what f(0) is and I say “I won’t tell you, but f(3) = 4”.

You ask me what f ′(0) is and I say “I won’t tell you, but
df

dx

∣∣∣
x=3

= 2”.

You ask me what f ′′(0) is and I say “I won’t tell you, but
d2f

dx2

∣∣∣
x=3

= 5”.

You ask me what f ′′′(0) is and I say “I won’t tell you, but
d3f

dx3

∣∣∣
x=3

= 0 and all the rest of the
dkf

dxk

∣∣∣
x=3

are coming out to 0”.
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At this point you win because you know that

f(x) = f
∣∣
x=3

+

(
df

dx

∣∣∣
x=3

)
(x− 3) +

1

2!

(
d2f

dx2

∣∣∣
x=3

)
(x− 3)2 +

1

3!

(
d3f

dx3

∣∣∣
x=3

)
(x− 3)3 + · · ·

= 2 + 5(x− 3) +
1

2!
5(x− 3)2 +

1

3!
· 0(x− 3)3 + 0 + 0 + · · ·

= 2 + 5x− 15 +
5

2
(x2 − 6x+ 9) + 0 + 0 + · · ·

= −13 + 5x+
5

2
x2 − 15x+

45

2

=
5

2
x2 − 10x+

19

2
,

and so you know what f is.
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7.11 The genesis lecture

The function god(t)

There is one function that

(a) in the Beginning, created something from nothing, and

(b) is “unchanging”, or rather, its change is itself.

Through the ages thinkers have contemplated this function and nowadays it is common to write (a)
and (b) in abbreviated form,

(a′) god(0) = 1, and (b′)
d god(t)

dt
= god(t),

but the meaning is still the same.

Two of the children of god are eve and adam:

god(it) = adam(t) + i eve(t).

Trying to understand god(t)

If we try to “understand” god in “normal” terms,

god(t) = a0 + a1t+ a2t
2 + a3t

3 + · · · ,

then
since god(0) = 1, a0 = 1, and

since
dgod(t)

dt
= god(t), a1 = a0, and

2a2 = a1, and
3a3 = a2, and
4a4 = a3, and
5a5 = a4, . . . , etc.,

and so

god(t) = 1 + t +
1

2!
t2 +

1

3!
t3 +

1

4!
t4 + · · · ,

which illustrates that god(t) exists everywhere and goes on forever.

An amazing thing about god(t)

One of the amazing things about god is that

god(t+ s) = god(t) god(s).

To see why god is this way suppose that there is a “different” function such that

(a′′) is “unchanging”

(
i.e.

d g̃od(t)

dt
= g̃od(t)

)
, and
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(b′′) in the Beginning, was the way that god is after s millenia ( i.e. g̃od(0) = god(s) ).

By the chain rule,

d god(t+ s)

dt
= god(t+ s) and god(0 + s) = god(s),

and so
god(t+ s) = g̃od(t).

Also,
d (god(t)god(s))

dt
= god(t)god(s), and god(0)god(s) = god(s),

and so
god(t)god(s) = g̃od(t) = god(t+ s).

What about adam(t) and eve(t)?

god(it) = 1 +it +
(it)2

2!
+
(it)3

3!
+
(it)4

4!
+
(it)5

5!
+ · · ·

= 1 +
i2t2

2!
+
i4t4

4!
+
i6t6

6!
+ · · ·

+it +
i3t3

3!
+
i5t5

5!
+
i7t7

7!
+ · · ·

= 1 − t2

2!
+
t4

4!
− t6

6!
+ · · ·

+it − it3

3!
+
it5

5!
− it7

7!
+ · · ·

=

(
1− t2

2!
+

t4

4!
− t6

6!
+

t8

8!
− · · ·

)
+ i

(
t− t3

3!
+

t5

5!
− t7

7!
+ · · ·

)
and, since adam and eve are the children of god,

i.e. because god(it) = adam(t) + i eve(t) ,

we see that

adam(t) = 1− t2

2!
+

t4

4!
− t6

6!
+

t8

8!
+ · · · , and

eve(t) = t− t3

3!
+

t5

5!
− t7

7!
+

t9

9!
+ · · · ,

from which it follows that

adam(0) = 0, eve(0) = 1,

adam(−t) = −adam(t), eve(−t) = eve(t),

d adam(t)

dt
= eve(t),

d eve(t)

dt
= −adam(t).
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So, adam and eve are complete opposites and identical twins at the same time.

Complete opposites and identical twins at the same time, another manifestation

1 = god(0) = god(it− it) = god(it+ i(−t)) = god(it)god(i(−t))
= (adam(t) + i eve(t))(adam(−t) + i eve(−t))
= (adam(t) + i eve(t))(adam(t)− i eve(t))

= (adam(t))2 + (eve(t))2,

i.e. 1 = (adam(t))2 + (eve(t))2.

Through the ages: where are we now?

Let x = eve(t) and y = adam(t).

(A) In the Beginning the point (x, y) was at (adam(0), eve(0)) = (1, 0), and

since 1 = adam(t))2 + (eve(t))2, x2 + y2 = 1, and

(B) adam and eve travel through the ages on a circle of radius 1.
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Where are they after d millenia?

The distance traveled
after d millenia

=

∫ t=d

t=0
ds =

∫ t=d

t=0

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ t=d

t=0

√(
d adam(t)

dt

)2

+

(
d eve(t)

dt

)2

dt

=

∫ t=d

t=0

√
(eve)2 + (−adam(t))2 dt

=

∫ t=d

t=0

√
1 dt =

∫ t=d

t=0
dt = t

∣∣∣t=d

t=0
= d− 0 = d,

and so
adam(t) = x-coordinate of the point on a circle of radius 1

which is distance d from the point (1,0), and

eve(t) = y-coordinate of the point on a circle of radius 1
which is distance d from the point (1,0).
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and so

adam(d) =
opposite

hypotenuse
and eve(d) =

adjacent

hypotenuse
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for a right triangle with angle d.

Some remarks on society

1. It is interesting to note that our school systems like to introduce our children to adam(t) and eve(t)
but prefer to hide from my child how close they really are to god(t).

2. Mathematicians are a cloistered group and prefer to study god, adam, and eve in anonymity. In
the mathematical literature

god(t) is usually called et ,
adam(t) is usually termed cos t , and
eve(t) is usually called sin t .
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