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4 Generators and relations for Sn and GLn(F)
4.1 A presentation theorem for Sn

Let Sn be the symmetric group of permutation matrices and let

si = 1 + Ei,i+1 + Ei+1,i → Eii → Ei+1,i+1, for i ↑ {1, . . . , n→ 1}.

The following theorem shows that the symmetric group Sn is a Coxeter group.

Theorem 4.1. The symmetric group Sn is presented by generators s1, . . . , sn→1 and relations

s2j = 1, sisi+1si = si+1sisi+1, sjsk = sksj , (Crels)

for j, k ↑ {1, . . . , n→ 1} with k ↓↑ {j → 1, j + 1} and i ↑ {1, . . . , n→ 2}.

Proof sketch. The proof requires four steps:

(1) Generators A in terms of generators B.

(2) Generators B in terms of generators A.

(3) Relations A from relations B.

(4) Relations B from relations A.

Here

Generators A: { permutation matrices}

Relations A: { matrix multiplication of permutation matrices}

Generators B: { simple transpositions s1, . . . , sn→1 }

Relations B: { the relations in (Crels) }

Further details of the proof are given in Section 4.1.3.

4.1.1 Length and reduced words

Let w ↑ Sn. A reduced word for w is an expression w = si1 · · · siω with i1, . . . , iω ↑ {1, . . . , n→ 1} and
ω minimal.

The length of w is ω(w), the length of a reduced word for w.

The proof of the following Proposition is given in Section 4.1.2.

Proposition 4.2. Let

Inv(w) = {(i, j) | i, j ↑ {1, . . . , n} with i < j and w(i) > w(j)}. (Invwdef)

Then

ω(w) = Card(Inv(w)).
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4.1.2 A reduced word algorithm for w ↑ Sn

Let w ↑ Sn. A reduced word for w is an expression w = si1 · · · siω with i1, . . . , iω ↑ {1, . . . , n→ 1} and
ω minimal.

The length of w is ω(w), the length of a reduced word for w.

The following is an explicit algorithm for producing a reduced word for w. It is a version of the ‘row
reduction’ algorithm (see Section 4.3.2).
Let j1 > 1 be maximal such that wj,1 ↓= 0. Let

w(1) =

{
w, if j1 does not exist,

s1 · · · sj1→1w, if j1 exists.

Let j2 > 2 be maximal such that w(1)
j,2 ↓= 0. If j2 does not exist set w(2) = w(1) and if j2 does exist set

w(2) =

{
w(1), if j2 does not exist,

s2 · · · sj2→1w(1), if j2 exists.

Continue this process to produce w(1), . . . , w(n). Then w(n) = 1 and

w = · · · (sj2→1 · · · s2)(sj1→1 · · · s1) is a reduced word for w. (gdyredwd)

Let us state this structural result as a theorem.

Theorem 4.3. Let w ↑ W and define

Inv(w) = {(i, j) | i, j ↑ {1, . . . , n} with i < j and w(i) > w(j)}.

For i ↑ {1, . . . , n→ 1} let ji be given by ji → i = #{(i, k) ↑ Inv(w) | k ↑ {i+ 1, . . . , n}}. Then

w = · · · (sj2→1 · · · s2)(sj1→1 · · · s1) is a reduced word for w.

and

ω(w) = Card(Inv(w)).

Example 4.1. If w ↑ S4 is given by

w =





0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0



 then s3(s2s3)(s1s2w) = s3(s2s3)





1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



 = s3





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 = 1,

so that w = (s2s1)(s3s2)s3.

The longest element of Sn is the permutation w0 given by w0(i) = n → i for i ↑ {1, . . . , n}. If
w ↑ Sn then the greedy reduced word for w is a a subword of the reduced word of the longest element
given by

(sn→1 · · · s2s1)(sn→1 · · · s3s2) · · · (sn→1sn→2)sn→1 = w0. (longelt)
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4.1.3 Proof of the presentation theorem for Sn

The simple transpositions in Sn are the matrices si = si,i+1,

si =

i i+1







1
. . .

1
i 0 1

i+1 1 0
1

. . .

1

, for i ↑ {1, . . . , n→ 1}. (4.1)

Proposition 4.4. The symmetric group Sn is presented by generators s1, s2, . . . , sn→1 and relations

s2i = 1 and sjsj+1sj = sj+1sjsj+1 and sksω = sωsk, (4.2)

for i, j, k, ω ↑ {1, . . . , n→ 1} with j ↓= n→ 1 and k ↓= ω± 1.

Proof.

Generators A: the set of permutation matrices.
Relations A: all products of permutations w1w2 given by matrix multiplication.
Generators B: s1, . . . , sn→1.
Relations B: As given in (4.2).

The proof is accomplished in four steps:

(1) Write generators B in terms of generators A.

(2) Deduce relations B from relations A.

(3) Write generators A in terms of generators B.

(4) Deduce relations A from relations B.

Step 1: Generators B in terms of generators A. This is provided by (4.1).

Step 2: Relations B from relations A. This step is given the following matrix computations:

s21 =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)

s1s2s1 =




0 1 0
1 0 0
0 0 1








1 0 0
0 0 1
0 1 0








0 1 0
1 0 0
0 0 1



 =




0 0 1
0 1 0
1 0 0





and

s2s1s2 =




1 0 0
0 0 1
0 1 0








0 1 0
1 0 0
0 0 1








1 0 0
0 0 1
0 1 0



 =




0 0 1
0 1 0
1 0 0





so that s1s2s1 = s2s1s2 and

s1s3 =





0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 =





0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




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and

s3s1 =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



 =





0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0





so that s1s3 = s3s1.

Step 3: Generators A in terms of generators B. This step is provided by (gdyredwd).

Step 4: Relations A from relations B.

si(sj→1 · · · s2s1) = sj→1 · · · si+2sisi+1sisi→1 · · · s2s1, by the third set of relations in (4.2),

= sj→1 · · · si+2si+1sisi+1si→1 · · · s2s1, by the second set of relations in (4.2),

= (sj→1 · · · si+2si+1sisi→1 · · · s2s1)si, by the third set of relations in (4.2),

So siw can be written in normal form. By Step 3, w1 can be written as a product of simple transpo-
sitions, so one simple transposition at a time, w1w can be written in normal form.

4.1.4 The graph of reduced words for w ↑ Sn

Define a graph !(w) with

Vertices: {reduced words of w}
Edges: u ↔ u↑ if u↑ = si1 · · · siω is obtained from u = sj1 · · · sjω by applying

a relation sisi+1si = si+1sisi+1 or a relation sisj = sjsi with j ↓↑ {i→ 1, i+ 1}.

Theorem 4.5. Let w ↑ Sn. The graph !(w) of reduced words of w is connected.

Proof. Let
w = si1 · · · siω and w = sj1 · · · sjω

be reduced words.

Case 1: i1 = j1. The two reduced words for w have the same first letter. By induction, the reduced
words v = si2 · · · siω and v = sj2 · · · sjω are connected.

Case 2: i1 ↓= j1. Since ω(sj1w) < ω(w) then there exists k such that sj1w = si1 · · · sik→1!!siksik+1 · · · siω .
Case 2a: k ↓= ω. Then

w = sj1 · · · sjω
w = sj1si1 · · · sik→1!!siksik+1 · · · siω and

w = si1 · · · siω

are all reduced words for w. Since the first factor is the same in the first two of these they are
connected. Since the last factor is the same in the last two of these they are connected. So, by
transitivity, the first is connected to the last.

Case 2b: k = ω and j1 ↓↑ {i1 → 1, i1 + 1}. Then

w = sj1 · · · sjω ,
w = sj1si1 · · · siω→1 ,

w = si1sj1 · · · siω→1 and

w = si1si2 · · · siω
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and the first two are connected since they have the same first letter, the middle two are connected by
the move sj1si1 = sj1si1 and the last two are connected since they have the same first letter.

Case 2c: k = ω and j1 ↑ {i1 → 1, i1+}. Then

w = si1si2 · · · siω ,
w = si1sj1si1 · · · sir→1!!sirsir+1 · · · siω→1 ,

w = sj1si1sj1 · · · sir→1!!sirsir+1 · · · siω→1 , and

w = sj1sj2 · · · sjω ,

and the first two are connected since they have the same first letter, the middle two are connected by
the move si1sj1si1 = sj1si1sj1 and the last two are connected since they have the same first letter.

4.2 Introducing root system notation

Positive roots label reflections. For i ↑ {1, . . . , n}, let

εi = (0, . . . , 0, 1, 0, . . . , 0) ↑ Zn with 1 in the ith spot and all other entries 0.

Then
{ε1, . . . , εn} is a Z-basis of Zn.

The positive roots are the elements of

R+ = {εi → εj | i, j ↑ {1, . . . , n} such that i < j}. (RpdefSn)

and the transpositions, or reflections, in Sn are

sij = 1 + Eij + Eji → Eii → Ejj , for i, j ↑ {1, . . . , n} with i ↓= j.

Simple roots label simple transpositions. The simple roots are ϑ1, . . . ,ϑn→1 given by

ϑ1 = ε1 → ε2, ϑ2 = ε2 → ε3, . . . ,ϑn→1 = εn→1 → εn.

The simple transpositions, or simple reflections are

s1 = s12, s2 = s23, . . . , sn→1 = sn→1,n.

Inversion sets in terms of roots. Let w ↑ Sn. Recall from (Invwdef) that Inv(w) is defined by

Inv(w) = {(i, j) | i, j ↑ {1, . . . , n} with i < j and w(i) > w(j)}.

Using the action of Sn on Zn that permutes the coordinates and identifying εi → εj ↑ R+ with the
pair (i, j) write

Inv(w) = {ϑ ↑ R+ | wϑ ↓↑ R+}.
The longest element w0 of Sn is given by w0(i) = n→ i for i ↑ {1, . . . , n} and has

Inv(w0) = R+.

Proposition 4.6. Let w ↑ Sn and let w = si1 · · · siω be a reduced word for w. The root sequence for
the reduced word w→1 = siω · · · si1 is (ϖ1, . . . ,ϖω) given by

ϖ1 = ϑi1 , ϖ2 = si1ϑi2 , . . . ϖω = si1si2 · · · siω→1ϑiω .

Then

{ϖ1, . . . ,ϖω} = Inv(w→1).
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Proof. The proof is by induction on ω, where ω is the length of the reduced word for w. If j ↑ {1, . . . , n}
and ω(sjw) > ω(w) then w→1sj = si1 · · · siωsj is a reduced word for w→1sj and the root sequence for
w→1sj is

ϱ1 = ϑj , ϱ2 = sjϑi1 , ϱ3 = sjsi1ϑi2 , . . . , ϱω+1 = sjsi1 · · · siω→1ϑiω .

So
{ϱ1, . . . , ϱω+1} = {ϑj} ↗ sjInv(w

→1) = Inv(w→1sj),

where the last equality follows from Inv(w→1) = {(i, j) | i < j and w→1(i) > w→1(j)} and that

w→1sj = (w→1(1), . . . , w→1(j + 1), w→1(j), . . . , w→1(n)), in one line notation.

(in other words, in one line notation, the permutations w→1 and w→1sj di”er only in ordering of the
jth and the (j + 1)st entries).
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4.3 A presentation theorem for GLn(F)
Let F be a field, let n ↑ Z>0 and let Mn(F) be the set of n↘ n matrices with entries in F.

• An n↘ n invertible matrix is an n↘ n matrix A ↑ Mn(F) such that

there exists A→1 ↑ Mn(F) such that A→1A = 1 and AA→1 = 1.

• The general linear group is

GLn(F) = {n↘ n invertible matrices with entries in F}.

The invertible elements of the field F are the elements of

F↓ = {d ↑ F | d ↓= 0} = {1↘ 1 invertible matrices with entries in F} = GL1(F).

Theorem 4.7. The group GLn(F) is presented by generators

yi(c), hj(d), xkω(c), for

c ↑ F, d1, . . . , dn ↑ F↓,
i ↑ {1, . . . , n→ 1}, j ↑ {1, . . . , n}
k, ω ↑ {1, . . . , n} with k < ω.

(GensB)

with the following relations:

• The reflection relation is

yi(c1)yi(c2) =

{
yi(c1 + c→1

2 )hi(c2)hi+1(→c→1
2 )xi,i+1(c

→1
2 ), if c2 ↓= 0,

xi,i+1(c1), if c2 = 0.
(refrel)

• The building relations are

yi(c1)yi+1(c2)yi(c3) = yi+1(c3)yi(c1c3 + c2)yi+1(c1),
yi(c1)yj(c2) = yj(c2)yi(c1), if j ↓↑ {i→ 1, i+ 1}. (bldrel)

• The x-interchange relations are

xij(c1)xij(c2) = xij(c1 + c2),

xij(c1)xik(c2) = xik(c2)xij(c1), xik(c1)xjk(c2) = xjk(c2)xik(c1), (xint)

xij(c1)xjk(c2) = xjk(c2)xij(c1)xik(c1c2), xjk(c1)xij(c2) = xij(c2)xjk(c1)xik(→c1c2),

where i < j < k.

• The h-processing relations are

hi(d1)hj(d2) = hj(d2)hi(d1) and hi(d1)hi(d2) = hi(d1d2), (hhrel)

• Letting h(d1, . . . , dn) = h1(d1) · · ·hn(dn), the h-past-y relation is

h(d1, . . . dn)yi(c) = yi(cdid
→1
i+1)h(d1, . . . , di→1, di+1, di, di+2, . . . , dn). (hpyrel)

• Letting h(d1, . . . , dn) = h1(d1) · · ·hn(dn), the h-past-x relation is

h(d1, . . . , dn)xij(c) = xij(cdid
→1
j

)h(d1, . . . , dn). (hpxrel)
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• The x-past-y relations are

xi,i+1(c1)yi(c2) = yi(c1 + c2)xi,i+1(0),

xik(c1)yk(c2) = yk(c2)xik(c1c2)xi,k+1(c1), xi,k+1(c1)yk(c2) = yk(c2)xik(c1), (xpyrel)

xij(c1)yi(c2) = yi(c2)xi+1,j(c1), xi+1,j(c1)yi(c2) = yi(c2)xij(c1)xi+1,j(→c1c2),

where i < k and i+ 1 < j.

Proof sketch.

Generators A: { invertible matrices}

Relations A: { matrix multiplication of invertible matrices}

Generators B: { row reducers yi(c), diagonal generators hi(d), and elementary matrices xij(c) }

Relations B: { the interchange relations in the statement }

The proof requires four steps:

(1) Generators A in terms of generators B.

(2) Generators B in terms of generators A.

(3) Relations A from relations B.

(4) Relations B from relations A.

Step(2), which requires the expression of the Generators B in terms of the generators A, is provided
by the definitions in section 4.3.1.

Step (4), which derives the Relations B from relations A (matrix multiplicaton), is checked in section
4.3.3.

Step (1), which describes how to write an invertible matrix in terms of the elementary matrices is
given in section 4.3.2.

Step (3), which descirbes how to derive Relations A (matrix multiplication) from the relations B, is
checked in section 4.3.4.

4.3.1 Elementary matrices, diagonal generators and row reducers

Let
Eij be the n↘ n matrix with 1 in the (i, j) entry and 0 elsewhere.

• The elementary matrices in GLn(F) are the matrices

xij(c) = 1 + cEij , for i, j ↑ {1, . . . , n} with i ↓= j and c ↑ F,

• The diagonal generators in GLn(F) are the matrices

hi(d) = 1 + (d→ 1)Eii, for i ↑ {1, . . . , n} and d ↑ GL1(F).
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• The row reducers in GLn(F) are

yi(c) = 1 + (c→ 1)Eii → Ei+1,i+1 + Ei,i+1 + Ei+1,i for i ↑ {1, . . . , n→ 1} and c ↑ F.

yi(c) =





1
. . .

1
c 1
1 0

1
. . .

1





and yi(c)
→1 =





1
. . .

1
0 1
1 →c

1
. . .

1





4.3.2 A reduced word algorithm for g ↑ GLn(F)

Let g ↑ GLn(F) so that g is an n↘ n invertible matrix.
The following is an explicit algorithm for writing g as a product of row reducers yi(c), diagonal

generators hi(d) and upper triangular elementary matrices xij(aij). This procedure is no di”erent than
the usual row reduction procedure: namely, a way of writing an invertible matrix g in a ‘normal form’
as a product of elementary matrices by the ‘row reduction’ algorithm. This process is a generalization
of the algorithm for construction the greedy reduced word for a permutation w that was introduced
in Section 4.1.2.

Let j1 > 1 be maximal such that such that g(j1, 1) ↓= 0. Let If j1 = 1 then let g(1) = g. If j1 ↓= 1 then
let

g(1) = y1
(

g(1,1)
g(j1,1)

)→1
y2

(
g(1,2)
g(j1,1)

)→1
· · · yj1→1

(
g(j1→1,1)
g(j1,1)

)→1
g.

Let j2 > 2 be maximal such that g(1)(j2, 2) ↓= 0. If j2 = 2 then let g(2) = g(1). If j2 ↓= 2 then let

g(2) = y2
(

g
(1)(2,2)

g(1)(j2,2)

)→1
y3

(
g
(1)(3,2)

g(1)(j2,2)

)→1
· · · yj2→1

(
g
(1)(j2→1,2)
g(1)(j2,2)

)→1
g(1).

Continuing this process will produce g(n) which has the property that

the first nonzero entry in row j + 1 is to the right of the first nonzero entry in row j.

Since g is invertible then g(n) must be upper triangular.
Let b = g(n). Then

g = · · · (yj2→1

(
g
(1)(j2→1,2)
g(1)(j2,2)

)
· · · y3

(
g
(1)(3,2)

g(1)(j1,2)

)
y2

(
g
(1)(2,2)

g(1)(j2,2)

)
)

· (yj1→1

(
g(j1→1,1)
g(j1,1)

)
· · · y2

(
g(2,1)
g(j1,1)

)
y1

(
g(1,1)
g(j1,1)

)
) · b (GLfact)

Let us state this structural result as a theorem. In stating Theorem 4.8 it is useful to take advantage
of the corresponding structural result for a permutation w in the symmetric group, namely the box
greedy reduced word for w that is produced in Section 4.1.2.

Theorem 4.8. Let B be the group of upper triangular invertible matrices. Let g ↑ GLn(C). There

there exists a unique w ↑ Sn and unique c1, . . . , cω ↑ F a unique b ↑ B such that

g = yi1(c1) · · · yiω(cω)b,

where w = si1 · · · siω is the greedy reduced word for w.
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Example 4.2. Let

g =





7 6 2 4
1 8 7 9
8 6 3 5
0 1 1 2



 .

Since

g =





7 6 2 4
1 8 7 9
8 6 3 5
0 1 1 2



 = y2(
1
8)





7 6 2 4
8 6 3 5
0 58

8
53
8

67
8

0 1 1 2





= y2(
1
8)y1(

7
8)





8 6 3 5
0 3

4
1
4 →3

8
0 58

8
53
8

67
8

0 1 1 2





= y2(
1
8)y1(

7
8)y3(

29
4 )





8 6 3 5
0 3

4
1
4 →3

8
0 1 1 2
0 0 →5

8 →49
8





= y2(
1
8)y1(

7
8)y3(

29
4 )y2(

3
4)





8 6 3 5
0 1 1 2
0 0 →1

2 →15
8

0 0 →5
8 →49

8





= y2(
1
8)y1(

7
8)y3(

29
4 )y2(

3
4)y3(

4
5)





8 6 3 5
0 1 1 2
0 0 →5

8 →49
8

0 0 0 →71
40



 .

The examples

x34(c34)x24(c24)x14(c14)x23(c23)x13(c13)x12(c12) =





1 c12 c13 c14
0 1 c23 c24
0 0 1 c34
0 0 0 1





and

h1(d1)h2(d2)h3(d3)h4(d4) · x34(c34)x24(c24)x14(c14)x23(c23)x13(c13)x12(c12)

= h1(d1)h2(d2)h3(d3)h4(d4)





1 c12 c13 c14
0 1 c23 c24
0 0 1 c34
0 0 0 1



 =





d1 c12 c13 c14
0 d2 c23 c24
0 0 d3 c34
0 0 0 d4





show how an upper triangular matrix is written in normal form as a product of hi(d) and xjk(c).
For i, j ↑ {1, . . . , n} with i < j let aij ↑ F. The product

(∏

i<j

xij(aij)
)

is in matrix parametrization order if

xjk(ajk) appears before xik(aik) for j > i, and xjω(ajω) appears before xik(aik) for ω > k.
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Theorem 4.9. Let g ↑ GLn(C). There there exists a unique w ↑ Sn and unique c1, . . . , cω ↑ F and

unique d1, . . . , dn ↑ F↓
and unique aij ↑ F for i, j ↑ R+

such that

g = yi1(c1) · · · yiω(cω) · h1(d1) · · ·hn(dn) ·
(∏

i<j

xij(aij)
)
,

where w = si1 · · · siω be the greedy reduced word for w and the product

(∏
i<j

xij(aij)
)

is in matrix

parametrization order.

Example 4.3. If g =





7 6 2 4
1 8 7 9
8 6 3 5
0 1 1 2



 as in Example 4.2 then

g = y2(
1
8)y1(

7
8)y3(

29
4 )y2(

3
4)y3(

4
5)h1(8)h2(1)h3(→

5
8)h4(→

71
40)x34(→

49
8 )x24(2)x14(5)x23(1)x13(3)x12(6)

is an expression for g purely in terms of the row reducers, the diagonal geberators and the upper

triangular elementary matrices.

4.3.3 Obtaining the interchange relations from matrix multiplication

Proof of the reflection relation:

If c1 ↓= 0 and c2 ↓= 0 then

y1(c1)y1(c2) =

(
c1 1
1 0

)(
c2 1
1 0

)
=

(
c1c2 + 1 c1

c2 1

)

=

(
c1 + c→1

2 1
1 0

)(
c2 1
0 →c→1

2

)
=

(
c1 + c→1

2 1
1 0

)(
c2 0
0 →c→1

2

)(
1 c→1

2
0 1

)

= y1(c1 + c→1
2 )h1(c2)h2(→c→1

2 )x12(c
→1
2 ).

If c2 = 0 then

y1(c1)y1(0) =

(
c1 1
1 0

)(
0 1
1 0

)
=

(
1 c1
0 1

)
= x12(c1).

Proof of the building relation:




c1 1 0
1 0 0
0 0 1








1 0 0
0 c2 1
0 1 0








c3 1 0
1 0 0
0 0 1



 =




c1c3 + c2 1 0

c3 1 0
1 0 0





=




1 0 0
0 c3 1
0 1 0








c1c3 + c2 1 0

1 0 0
0 0 1








1 0 0
0 c1 1
0 1 0





The computation for the proof of the first x-interchange relation is:

(
1 c1
0 1

)(
1 c2
0 1

)
=

(
1 c1 + c2
0 1

)
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The key computation for the proof of the h-past-y relation is:

(
d1 0
0 d2

)(
c 1
1 0

)
=

(
cd1 d1
d2 0

)
=

(
cd1d

→1
2 1

1 0

)(
d2 0
0 d1

)

Key computations for the proof of the x-past-y relations are:

(
1 c1
0 1

)(
c2 1
1 0

)
=

(
c1 + c2 1

1 0

)
,




1 c1 0
0 1 0
0 0 1








1 0 0
0 c2 1
0 1 0



 =




1 c1c2 c1
0 1 0
0 0 1



 =




1 0 0
0 c2 1
0 1 0








1 c1c2 0
0 1 0
0 0 1








1 0 c1
0 1 0
0 0 1



 ,




1 0 c1
0 1 0
0 0 1








1 0 0
0 c2 1
0 1 0



 =




1 c1 0
0 c2 1
0 1 0



 =




1 0 0
0 c2 1
0 1 0








1 c1 0
0 1 0
0 0 1



 ,




1 0 c1
0 1 0
0 0 1








c2 1 0
1 0 1
0 0 1



 =




c2 1 c1
1 0 0
0 0 1



 =




c2 1 0
1 0 1
0 0 1








1 0 0
0 1 c1
0 0 1



 ,




1 0 0
0 1 c1
0 0 1








c2 1 0
1 0 1
0 0 1



 =




c2 1 0
1 0 c1
0 0 1



 =




c2 1 0
1 0 1
0 0 1








1 0 c1
0 1 0
0 0 1








1 0 0
0 1 →c1c2
0 0 1



 .

The remaining relations are derived similarly.

4.3.4 Deriving matrix multiplication from the interchange relations

Suppose that g1 and g2 are two expressions given in the normal form of Theorem 4.9. The goal is to
use the Relations B to rearrange and simplify the product g1g2.

Step 1. The h-past-x relations and h-past-y relations and the x-past-y relations allow us to move
all the row reducers yi(c) to the left, all the elementary matrices xij(c) to the right so that all the
diagonal generators hi(d) are in the middle.

Step 2. The hh-relations allow us to write the product of the diagonal generators in the form
h(d1, . . . , dn).

Step 3. The reflection relation and the building relation allow us to reduce the y-product to being a
y-product for a reduced word of a permutation. Then the theorem that the graph of reduced words is
conneted allows us to arrange this reduced word to be the greedy reduced word for w.

Step 4. The x-interchange relations allow us to put the xij(c) into its appropriate place in the matrix
presentation order.

In combination these moves rearrange the product g1g2 into normal form.

4.4 Introducing root system notation

Roots label elementary matrices. For i ↑ {1, . . . , n}, let

εi = (0, . . . , 0, 1, 0, . . . , 0) ↑ Zn with 1 in the ith spot and all other entries 0.
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Then
{ε1, . . . , εn} is a Z-basis of Zn.

Use the notation
xεi→εj (c) = xij(c), for i, j ↑ {1, . . . , n} with i ↓= j.

The set of roots is
R = {εi → εj | i, j ↑ {1, . . . , n} and i ↓= j}

and
the elementary matrices are the xϑ(c), for ϑ ↑ R and c ↑ F.

The positive roots label the elementary matrices in B. Let B be the group of upper triangular
invertible matrices. The positive roots are the elements of

R+ = {εi → εj | i, j ↑ {1, . . . , n} and i ↓= j and xij(c) ↑ B} (Rpdef)

= {εi → εj | i, j ↑ {1, . . . , n} such that i < j}.

The group of upper triangular matrices with 1 on the diagonal (unipotent upper triangular matrices)
is

U =






(∏

i<j

xij(aij)
)
| aij ↑ F




 and U is generated by {x12(c), x23(c), . . . , xn→1,n(c) | c ↑ F}.

The simple roots are ϑ1, . . . ,ϑn→1 given by

ϑ1 = ε1 → ε2, ϑ2 = ε2 → ε3, . . . ,ϑn→1 = εn→1 → εn.

For ϑ ↑ R+, let
Xϑ = {xϑ(c) | c ↑ F}.

Then
U =

∏

ϑ↔R+

Xϑ and U is generated by {Xϑ1 , . . . ,Xϑn}.
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5 Bruhat decomposition and the Hecke algebra

5.1 Reviewing the normal form theorem

The normal form theorem, Theorem 4.9, is the following.

Theorem 5.1. Let g ↑ GLn(C). There there exists a unique w ↑ Sn and unique c1, . . . , cω ↑ F and

unique d1, . . . , dn ↑ F↓
and unique aij ↑ F for i, j ↑ {1, . . . , n} with i < j, such that

g = yi1(c1) · · · yiω(cω) · h1(d1) · · ·hn(dn) ·
(∏

i<j

xij(aij)
)
,

where w = si1 · · · siω be the greedy reduced word for w and the product

(∏
i<j

xij(aij)
)

is in matrix

parametrization order.

This theorem has such powerful consequences that it is useful to view it state it in several slightly
di”erent (slightly more general) incarnations. First, use the relations (bldrel) and Theorem 4.5 to
generalize the statement from the box greedy reduced word to any chosen reduced word and use the
relations (xint) to change from the matrix parametrization order to any chosen order of the xij(a).

Theorem 5.2. Suppose that for each w ↑ Sn a fixed reduced word for w has been chosen. Also

choose a specific order on {pairs (i,j) with i, j ↑ {1, . . . , n} and i < j}.

Let g ↑ GLn(C). There there exists a unique w ↑ Sn and unique c1, . . . , cω ↑ F and unique d1, . . . , dn ↑
F↓

and unique aij ↑ F for i, j ↑ R+
such that

g = yi1(c1) · · · yiω(cω) · h1(d1) · · ·hn(dn) ·
(∏

i<j

xij(aij)
)
,

where w = si1 · · · siω is the chosen reduced word for w and the product

(∏
i<j

xij(aij)
)
is taken in the

specific chosen order on {pairs (i,j) with i, j ↑ {1, . . . , n} and i < j}.
The next goal is to state the theorem in terms of the root system notations of Section 4.4.

Let w ↑ Sn and let w = si1 · · · siω be a reduced word for w. The root squence for the reduced word for
w→1 given by w→1 = siω · · · si1 is (ϖ1, . . . ,ϖω) given by

ϖ1 = ϑi1 , ϖ2 = si1ϑi2 , . . . ϖω = si1si2 · · · siω→1ϑiω ,

and, by Proposition 4.6, {ϖ1, . . . ,ϖω} = Inv(w→1) ≃ R+. Then

yi1(c1) · · · yiω(cω) = xϑi1
(c1)si1 · · ·xiω(cω)siω

= xϑi1
(c1)xsi1ϑi2

(c2) · · ·xsi1 ···siω→1
ϑiω

(cω)si1 · · · siω
= xϖ1(c1) · · ·xϖω

(cω)w,

with xϖ1(c1) · · ·xϖω
(cω) ↑ B. Thus, if b ↑ GLn(F) is upper triangular then yi1(c1) · · · yiω(cω)b ↑ BwB.

Theorem 5.3. Suppose that for each w ↑ Sn a fixed reduced word for w has been chosen. Also choose

a specific order on R+
, where R+

is the set of positive roots defined in (Rpdef).
Let g ↑ GLn(C). There there exists a unique w ↑ Sn and unique c1, . . . , cω ↑ F and unique d1, . . . , dn ↑
F↓

and unique aϑ ↑ F for ϑ ↑ R+
such that

g = xϖ1(c1) · · ·xϖω
(cω) · w · h1(d1) · · ·hn(dn) ·

( ∏

ϑ↔R+

xϑ(aϑ)
)
,

where w = si1 · · · siω is the chosen reduced word for w, the root sequence for the reduced word w→1 =

siω · · · si1 is (ϖ1, . . . ,ϖω), and the product

(∏
ϑ↔R+ xϑ(aϑ)

)
is in the specific chosen order on R+

.
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5.2 The Bruhat decomposition

The following structural result is a direct consequence of the normal form results of Section 5.1.

Theorem 5.4. (Bruhat decomposition) Let F be a field and let n ↑ Z>0. Let G = GLn(F). Then

G =


w↔W
BwB. (Bdecomp)

Let w ↑ Sn and let w = si1 · · · siω be a reduced word for w. Then

BwB =


c1,...,cω↔F
yi1(c1) · · · yiω(cω)B. (Bcell)

Example 5.1. When n = 3, coset representatives of cosets of B in the double cosets in B\G/B

B1B = {B},
Bs1B = {y1(c)B | c ↑ Fq},
Bs2B = {y2(c)B | c ↑ Fq},

Bs1s2B = {y1(c1)y2(c2)B | c1, c2 ↑ Fq},
Bs2s1B = {y2(c1)y1(c2)B | c1, c2 ↑ Fq},

Bs1s2s1B = {y1(c1)y2(c2)y1(c1)B | c1, c2, c3 ↑ Fq},

and

B = {h1(d1)h2(d2)h3(d3)x23(c3)x13(c2)x12(c1) | c1c2c3 ↑ Fq, d1, d2, d3 ↑ F↓
q }

=









d1 d1c1 d1c2
0 d2 d2c3
0 0 d3




 c1c2c3 ↑ Fq, d1, d2, d3 ↑ F↓

q




 ,

so that Card(B) = (q → 1)3q3.

5.3 The Hecke algebra Hn(q) and the flag representation 1
G

B

Let G = GLn(Fq) and let B be the subgroup of upper triangular matrices in G. The Hecke algebra is
the subalgebra Hn(q) of CG given by

Hn(q) =




f =


g↔G
f(g)g

 if b1, b2 ↑ B then b1fb2 = f




 . (Hckdef)

Define

Tw =
1

|B|


g↔BwB

g, for w ↑ Sn.

By (Bdecomp),
{Tw | w ↑ Sn}, is a basis of Hn(q).

The flag representation is the vector space

1GB =




v =


g↔G
v(g)g

 if b ↑ B then vb = v.




 . (1BGdef)
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Define

vy =
1

|B|


g↔yB
g, for y ↑ G.

By (Bcell),

vyi1 (c1)···yiω (cω)

 w ↑ Sn and c1, . . . , cω ↑ F and
w = si1 · · · siω is the greedy reduced word for w


is a basis of 1G

B
.

The group G acts on 1G
B

by left multiplication and the Hecke algebra Hn(q) acts on 1G
B

by right
multiplication. Via these actions 1G

B
is a module for CG⇐Hn(q).

5.4 Action of CG and of Hn(q) on 1
G

B

Let’s write the explicit action of Hn(q) on 1G
B
. Recall that if y ↑ G then

vy =
1

|B|


x↔yB
x, so that vyb = vy if b ↑ B.

The action of CG on 1G
B

is given by

gvy = vgy, for g ↑ G. (Gon1BG)

The following proposition provides an explicit computation of the action of Hn(q) on 1G
B
.

Proposition 5.5. Let w ↑ W and let w = si1 · · · siω be a reduced word for w. Let c1, . . . , cω ↑ Fq.

(a) If ω(wsi) > ω(w) then

vyi1 (c1)···yiω (cω)Tsi =


c↔Fq

vyi1 (c1)···yiω (cω)yi(c)

(b) If ω(wsi) < ω(w) then assume that iω = i and get

vyi1 (c1)···yiω→1
(cω→1)yi(cω)Tsi = vyi1 (c1)···yiω→1

(cω→1) +


c↔F↑
q

vyi1 (c1)···yiω→1
(cω→1)yi(cω→c→1)

Proof. If b↑ ↑ B then b↑Tsi and so

vyTsi =
1

|B|


b↓↔B
yb↑Tsi =

1

|B|


b↓↔B
yTsi = yTsi =

1

|B|

( 

c↔Fq



b↔B
yyi(c)b

)
=



c↔Fq

vyyi(c).

(a) If ω(wsi) > ω(w) then

BwsiB =


c1,...,cω,c↔Fq

yi1(c1) · · · yiω(cω)yi(c)B,

so that {yi1(c1) · · · yiω(cω)yi(c) | c1, . . . , cω, c ↑ Fq} is a set of representatives of the B cosets in BwsiB.

(b) If ω(wsi) < ω(w) then the reflection equation (refrel) gives that

vyi1 (c1)···yiω→1
(cω→1)yi(cω)Ti =



c↔F
vyi1 (c1)···yiω→1

(cω→1)yi(cω)yi(c)

= vyi1 (c1)···yiω→1
(cω→1) +



c↔F↑

vyi1 (c1)···yiω→1
(cω→1)yi(cω→c→1).
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5.5 The product in the Hecke algebra

The following proposition provides an explicit computation of the product in Hn(q).

Proposition 5.6. For w ↑ W and i ↑ {1, . . . , n},

TwTsi =

{
(q → 1)Tw + qTwsi , if ω(wsi) = ω(w)→ 1,

Twsi , if ω(wsi) = ω(w) + 1.

Proof. We know

Tw =


c1,...,cω

vyi1 (c1)···yiω (cω).

If ω(wsi) = ω(w) + 1 then Proposition 5.5(a) gives

TwTsi =


c1,...,cω

vyi1 (c1)···yiω (cω)Tsi =


c1,...,cω,c

vyi1 (c1)···yiω (cω)yi(c) = Twsi .

If ω(wsi) = ω(w)→ 1 then Proposition 5.5(b) gives

TwTsi =


c1,...,cω

vyi1 (c1)···yiω (cω)Tsi

=


c1,...,cω

(
vyi1 (c1)···yiω→1

(cω→1) +


c↔F↑

vyi1 (c1)···yiω→1
(cω→1)yi(cω→c→1)

)

=


c1,...,cω→1

( 

cω↔Fq

vyi1 (c1)···yiω→1
(cω→1)

)
+



c1,...,cω→1

( 

d↔Fq



cω↔Fq
cω ↗=d

vyi1 (c1)···yiω→1
(cω→1)yi(d)

)

= q


c1,...,cω→1

vyi1 (c1)···yiω→1
(cω→1) + (q → 1)



c1,...,cω→1,d↔Fq

vyi1 (c1)···yiω→1
(cω→1)yi(d)

= qTwsi + (q → 1)Tw.

5.6 The flag variety, Schubert varieties and the Bruhat order

Let F be a field. For i ↑ {1, . . . , n→ 1} and c ↑ F, define

yi(c) = 1 + (c→ 1)Eii → Ei+1,i+1 + Ei,i+1 + Ei+1,i and define yi(⇒) = 1.

The flag variety is
G/B = {gB | g ↑ GLn(Fq)}.

Let w ↑ Sn and let w = si1 · · · siω be a reduced word for w. The Schubert variety indexed by w in the

flag variety is
BwB = {yi1(c1) · · · yiω(cω)B | c1, . . . , cω ↑ F ↗ {⇒}} (Svar)

By Theorem 4.5 and the relations in (bldrel), the Schubert variety BwB does not depend on the choice
of the reduced word for w. The Bruhat order is the partial order ⇑ on Sn defined by

BwB =


v↗w

BvB. (Bhtord)
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5.6.1 Partial flag varieties, minimal length representatives and the Bruhat order on Wµ

Let µ = (µ1, . . . , µω) with µ1, . . . , µω ↑ Z>0 and µ1 + · · ·+ µω = n. Let

Sµ = Sµ1 ↘ · · ·↘ Sµω and let J(µ) = {µ1, µ1 + µ2, . . . , µ1 + · · ·+ µω}.

Then elements
Wµ = {w ↑ Sn | if i ↓↑ J(µ) then w(i) < w(i+ 1)}.

are a set of minimal length representatives of the cosets in Sn/Sµ.

The µ-Bruhat decomposition is G =


w↔Wµ

BwPµ.

The µ-partial flag variety is
G/Pµ = {gPµ | g ↑ GLn(F)}.

Let w ↑ Wµ and let w = si1 · · · siω be a reduced word for w. The Schubert variety for w in the µ-partial
flag variety is

BwPµ = {yi1(c1) · · · yiω(cω)Pµ | c1, . . . , cω ↑ F ↗ {⇒}}

The Bruhat order on Wµ is the partial order on Wµ defined by

BwPµ =


v↗w

BvPµ.

5.6.2 Grassmannians, partitions in a k ↘ n rectangle and the dominance order

If µ = (k, n→k) then the µ-partial flag variety is the Grassmannian of k dimensional subspaces of Fn,

G(Fn)k = G/P(k,n→k) = {gP(k,n→k) | g ↑ GLn(F)}.

For a partition ς = (ς1, . . . ,ςk) with ς1, . . . ,ςk ↑ Z↘0 and n ⇓ ς1 ⇓ · · · ⇓ ςk define a permutation
wϱ ↑ Sn by

if i ↑ {1, . . . , n} and i ↓= k then w(i) < w(i+ 1), and
wϱ(1) = ςk + 1, wϱ(2) = ςk→1 + 2, . . . , wϱ(k → 1) = ς2 + k → 1, wϱ(k) = ς1 + k.

PICTURE

When µ = (k, n→ k) then S(k,n→k) = Sk ↘ Sn→k and the map

{partititons ς with ς ≃ (nk)} ⇔ W (n,n→k)

ς ↖↔ wϱ

is a bijection.

Via this bijection, the Schubert varieties BwϱP(k,n→k) in the Grassmannian Gk(Fn) are indexed by

partitions ς such that ς ≃ (nk). The dominance order on {partitions ς with ς ≃ (nk)} is given by
setting µ ⇑ ς if µ and ς satisfy the conditions

if i ↑ {1, . . . , k} then µ1 + · · ·+ µi ⇑ ς1 + · · ·+ ςi. (Gdomorder)

If ς is a partition and ς ≃ (nk) then

BwϱP(k,n→k) =


µ↘(nk)
µ≃ε

BwµP(k,n→k).
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