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4 Generators and relations for S, and GL,(F)

4.1 A presentation theorem for 5,

Let S,, be the symmetric group of permutation matrices and let
si=1+Fiiv1+ Fiy1i — By — Eig141, forie {1,...,n—1}.

The following theorem shows that the symmetric group 5, is a Coxeter group.

Theorem 4.1. The symmetric group Sy, is presented by generators si,...,Sp—1 and relations

2
S = 1, $iSi+15i = Si+15iSi+1, SjSk = SkSj, (Crels)

forjke{l,....n—1} withk ¢ {j—1,j+ 1} andi € {1,...,n—2}.
Proof sketch. The proof requires four steps:

1)
2)
3) Relations A from relations B.
4)

Generators A in terms of generators B.

(
(2) Generators B in terms of generators A.
(

(4) Relations B from relations A.

Here

Generators A: { permutation matrices}

Relations A: { matrix multiplication of permutation matrices}

Generators B: { simple transpositions sy, ..., S,—1 }
Relations B: { the relations in (Crels) }
Further details of the proof are given in Section m O

4.1.1 Length and reduced words

Let w € Sp,. A reduced word for w is an expression w = s;, - - - s;, with i1,...,4 € {1,...,n — 1} and
¢ minimal.
The length of w is £(w), the length of a reduced word for w.

The proof of the following Proposition is given in Section[4.1.2]
Proposition 4.2. Let
Inv(w) = {(¢,7) | 3,5 € {1,...,n} with i < j and w(i) > w(j)}. (Invwdef)

Then
{(w) = Card(Inv(w)).

32



Advanced Discrete Math MAST90030 notes, Arun Ram October 7, 2025

4.1.2 A reduced word algorithm for w € S,

Let w € S,,. A reduced word for w is an expression w = s;, - -+ 8;, with i1,...,4, € {1,...,n — 1} and

¢ minimal.

L

The length of w is £(w), the length of a reduced word for w.

The following is an explicit algorithm for producing a reduced word for w. It is a version of the ‘row
reduction’ algorithm (see Section[4.3.2).
Let 71 > 1 be maximal such that w;1 # 0. Let

w) =1 if j1 does not exist,
s1-+-8j,—1w, if ji exists.

Let jo > 2 be maximal such that wj(IQ) #£ 0. If jo does not exist set w® = w® and if jo does exist set

) w, if jo does not exist,
w =
Sg - - sjz_lw(l), if jo exists.
Continue this process to produce w™, ..., w™. Then w(™ =1 and
w="-(8j,—1--52)(8j,—1---51) is areduced word for w. (gdyredwd)

Let us state this structural result as a theorem.

Theorem 4.3. Let w € W and define
Inv(w) ={(4,75) | i,7 € {1,...,n} withi < j and w(i) > w(j)}.
Forie{l,...,n—1} let j; be given by j; —i = #{(i,k) € Inv(w) | k€ {i+1,...,n}}. Then
w="--(8j,-1-52)(Sj,—1- " 51) is a reduced word for w.

and
{(w) = Card(Inv(w)).

Example 4.1. If w € Sy is given by

0 0 01 1 000 1000
w = (1) 8 (1) 8 then  s3(s2s3)(s152w) = s3(s283) 8 8 (1) é =3 8 (1) 8 (1) =1,
01 00 01 00 0010
so that w = (s281)(s352)$3. O
The longest element of S, is the permutation wg given by wg(i) = n —i for i € {1,...,n}. If

w € 8§, then the greedy reduced word for w is a a subword of the reduced word of the longest element
given by
(Sn—1---5251)(Sp—1---5352) - (Spn—15n-2)5n—1 = Wo. (longelt)
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4.1.3 Proof of the presentation theorem for 5,

The simple transpositions in S, are the matrices s; = s; 41,

S; =
i+1

Proposition 4.4. The symmetric group Sy is presented by generators si, Sa, . .

s2=1 and

%

1+1

Sj8j+185 = Sj+15j5j+1

fori gk, e{l,...;on—1} withj#n—1and k #{+1.

Proof.

Generators A: the set of permutation matrices.

Relations A: all products of permutations wywe given by matrix multiplication.

Generators B: s1,...,8,_1.
Relations B: As given in lb

The proof is accomplished in four steps:

(1) Write generators B in terms of generators A.

(2) Deduce relations B from relations A.

)
(3) Write generators A in terms of generators B.
)

(4) Deduce relations A from relations B.

Step 1: Generators B in terms of generators A. This is provided by (4.1).

Step 2: Relations B from relations A. This step is given the following matrix computations:

0 1
10

0
§18281 = 1
0
and

1
98180 = | 0
0

so that s15981 = s98159 and
0
$183 = 1
153= 1
0

=N

_ O

o O O

= o O

ja)

S =

o= O O

= o o O

34

1
0
0

S = O

)(

0

o O o

01
10

0

S =

—= O

O O = O

)

o O O

o = O

S =

O = OO

)

(

S O =

o O

and

10
0 1

0
0
1

S = O

forie{1,...,n—1}.

)

O O = O

o O O

o

SkS¢ = S¢Sk,

_ o O O

O =

S =

O = O O

(4.1)

., 8n_1 and relations

(4.2)
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and
1 0 00 01 00 0100
5351 = 0100 1 000 _ 1 000
0 001 0010 0 001
0010 0 0 01 0010

so that s1s3 = s3s1.

Step 3: Generators A in terms of generators B. This step is provided by (gdyredwd).
Step 4: Relations A from relations B.

5i(Sj—1---8251) = Sj—1 - Si425iSi+15iSi—1 - - - S251, by the third set of relations in (4.2),
= Sj_1°"-Si128i415iSi415i—1- - S281, Dby the second set of relations in (4.2)),
= (8j_1+ - Si425i+15iSi—1 - $251)S;, by the third set of relations in (4.2,

So s;w can be written in normal form. By Step 3, w; can be written as a product of simple transpo-
sitions, so one simple transposition at a time, wyw can be written in normal form. ]

4.1.4 The graph of reduced words for w € S,
Define a graph I'(w) with

Vertices: {reduced words of w}
Edges: u—u if v/ =s; ---s;, is obtained from u = s;, - --s;, by applying
a relation s;5;415; = si+1;8i+1 or a relation s;s; = sjs; with j & {i — 1,7+ 1}.

Theorem 4.5. Let w € S,,. The graph I'(w) of reduced words of w is connected.
Proof. Let

W= 8; -8, and W= 8j "8y,
be reduced words.

Case 1: i1 = j1. The two reduced words for w have the same first letter. By induction, the reduced
words v = s;, - -+ 8;, and v = s, - - - 85, are connected.

Case 2: i1 # j1. Since £(sj,) < £(w) then there exists k such that sj,w = 54 -+ 54, SiSip,, - Si
Case 2a: k # ¢. Then

0

W = 84, " 85,
W = 84184y * " Sig_1 34 S " " Sig and

W= 8, 5,

are all reduced words for w. Since the first factor is the same in the first two of these they are
connected. Since the last factor is the same in the last two of these they are connected. So, by
transitivity, the first is connected to the last.

Case 2b: k =/ and j; & {i1 — 1,41 + 1}. Then
W= 85, S5
W = 858y " Siy_q
w = 8;; 8 -8, and

W = Sj; S84y *** Sy
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and the first two are connected since they have the same first letter, the middle two are connected by
the move s, 5, = sj,5;, and the last two are connected since they have the same first letter.

Case 2¢c: k =/ and j; € {iy — 1,i1+}. Then
W = 84,845 " 82’[7
W = 841851811 """ Sip_1857Sirg1 """ Sip_qs
w

= 81801551 " Sir_ 185 Sirg1 T St and

W = 5,55, S,
and the first two are connected since they have the same first letter, the middle two are connected by
the move s;, 55, 8;, = 55,5, 5;, and the last two are connected since they have the same first letter. [J
4.2 Introducing root system notation
Positive roots label reflections. For i € {1,...,n}, let

g; =(0,...,0,1,0,...,0) € Z™ with 1 in the ith spot and all other entries 0.

Then
{e1,...,en} is a Z-basis of Z™.

The positive roots are the elements of
Rt ={ei—¢j|i,j€{1,...,n} such that i < j}. (RpdefSn)
and the transpositions, or reflections, in S, are
sij =14+ E;j + Ej; — By — Ejj, fori,j € {1,...,n} with i # j.
Simple roots label simple transpositions. The simple roots are aq,...,q,_1 given by
Q] =€] —€2, Qg =€2—€3, ...,Qp_1=Ep_1— En.
The simple transpositions, or simple reflections are
S1 = S12, S9 =823, ..., Sp—1=Sp—1in-
Inversion sets in terms of roots. Let w € §,,. Recall from that Inv(w) is defined by
Inv(w) ={(i,7) | i, € {1,...,n} with i < j and w(i) > w(j)}.

Using the action of S, on Z" that permutes the coordinates and identifying ¢; — e; € R™ with the
pair (i, ) write
Inv(w) = {a € R" | wa ¢ RT}.

The longest element wq of S, is given by wg(i) =n —i for i € {1,...,n} and has
Inv(wg) = RT.

Proposition 4.6. Let w € S,, and let w = s;, -+ 5;, be a reduced word for w. The root sequence for
the reduced word w=t = s;, -+ s;, is (B1,...,B) given by

B1 =05, Po=380m,, ... Boe=S8i5iy "5 Q.
Then
~1
{/817"'aﬁé}:hlv(w )
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Proof. The proof is by induction on ¢, where £ is the length of the reduced word for w. If j € {1,...,n}

and1 {(sjw) > €(w) then w™ls; = s;, -+ s;,5; is a reduced word for w™'s; and the root sequence for

wsj s
Y1 = Qg Y2 = 850, Y3 = 8585 Wiy, - ey Vel = S5Siy Sy Qg
So
—1 —1
{7, vt ={oy} UsjInv(w™) = Inv(w™ "s;),

where the last equality follows from Inv(w™!) = {(4,7) | i < j and w™'(i) > w™(5)} and that
wls; = (w(1),..., 0w (G +1),w(j),...,w " (n)), in one line notation.

(in other words, in one line notation, the permutations w~! and w™1s; differ only in ordering of the
jth and the (j + 1)st entries). O
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4.3 A presentation theorem for GL,(F)

Let F be a field, let n € Z~( and let M, (F) be the set of n x n matrices with entries in F.

e An n X n invertible matriz is an n X n matrix A € M, (F) such that

there exists A~! € M, (F) such that A7'A=1and AA~!=1.

e The general linear group is

GL,(F) = {n x n invertible matrices with entries in F}.

The invertible elements of the field F are the elements of
F*={deF |d=+#0} ={1x1 invertible matrices with entries in F} = GL;(F).
Theorem 4.7. The group GL,(F) is presented by generators

celF,dy,...,d, e F*,
yi(c), hj(d), zrec), for ie{l,...,n—1},j€{1,...,n} (GensB)
k.t e{l,...,n} with k < /.

with the following relations:

e The reflection relation is

-1 -1 -1 :
i hl h@ - 2.1 ) 07
yi(eyi(es) = 17 (e1 + 3 )hi(ea)hiyr(=cy )ziipi(cy ) e ? (vefrel)
ziiv1(c1), if co = 0.
e The building relations are
yi(e1)yir1(c2)yi(es) = yir1(cs)yi(eres + c2)yivi(er), (bldrel)
yi(cr)yj(c2) = yj(ca)yi(er), ifj&{i—1i+1}
e The x-interchange relations are
zij(e1)zij(c2) = zij(cr + ca),
ij(cr)wik(c2) = wip(c2)wij(c1), zik(c1)wjr(ca) = zjp(c2)zin(cr), (xint)
zij(cr)zje(c2) = zjr(c2)wij(cr)zin(cica), zjk(c1)mii(c2) = wij(c2)zjn(cr)zin(—cica),
where i < j < k.
e The h-processing relations are
hi(dl)hj(dg) = hj(dg)hi(dl) and hl(dl)hl(dg) = hi(dldg), (hhrel)
e Letting h(dy,...,dy,) = hi(dy) - hyp(dy), the h-past-y relation is
h(dy, ... dp)yi(c) = yi(edidi ) h(dy, . .. di1,digr, diy disa, - .., dy). (hpyrel)
o Letting h(dy,...,d,) = hi(dy) - - hp(dy), the h-past-x relation is
h(dy, ..., dn)zij(c) = mij(cdid; h(dy, . . . dn). (hpxrel)
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o The x-past-y relations are

zii+1(c1)yi(c2) = yi(er + c2)xiit1(0),
zig(c1)yr(c2) = yr(c2)wir(cic2) @i pt1(c1), T py1(c1)yr(c2) = yr(c2)zi(cr), (xpyrel)

fUij(Cl)?Ji(@) = yi(02)f’3i+1,j(01), 93i+1,j(61)yi(02) = yi(C2)$ij(C1)$i+1,j(—6162),

where 1 < k and i+ 1 < j.

Proof sketch.
Generators A: { invertible matrices}
Relations A: { matrix multiplication of invertible matrices}
Generators B: { row reducers y;(c), diagonal generators h;(d), and elementary matrices z;;(c) }
Relations B: { the interchange relations in the statement }

The proof requires four steps:

(1) Generators A in terms of generators B.
(2) Generators B in terms of generators A.
(3) Relations A from relations B.
(4) Relations B from relations A.

Step(2), which requires the expression of the Generators B in terms of the generators A, is provided
by the definitions in section m

Step (4), which derives the Relations B from relations A (matrix multiplicaton), is checked in section
[4.3.3

Step (1), which describes how to write an invertible matrix in terms of the elementary matrices is

given in section [£.3.2]

Step (3), which descirbes how to derive Relations A (matrix multiplication) from the relations B, is
checked in section|4.3.4
O

4.3.1 Elementary matrices, diagonal generators and row reducers

Let
E;j be the n x n matrix with 1 in the (7, j) entry and 0 elsewhere.

o The elementary matrices in GLy(F) are the matrices

zij(c) = 1+ cEyj, fori,je{l,...,n} withi # j and c € F,

e The diagonal generators in GL,(F) are the matrices

hi(d) =1+ (d —1)E;;, fori € {1,...,n} and d € GL(FF).
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e The row reducers in GL,(F) are
yi(C) =1+ (C — 1>Eiz' — Ei+1,i+1 + Ei,i-i-l + Ei+1,i fori e {1, e, — 1} and c € F.
1 1

yi(c) = and yi(e) =

= 0
O

4.3.2 A reduced word algorithm for g € GL,(F)

Let g € GL,(F) so that g is an n X n invertible matrix.

The following is an explicit algorithm for writing g as a product of row reducers y;(c), diagonal
generators h;(d) and upper triangular elementary matrices x;j(a;;). This procedure is no different than
the usual row reduction procedure: namely, a way of writing an invertible matrix ¢ in a ‘normal form’
as a product of elementary matrices by the ‘row reduction’ algorithm. This process is a generalization
of the algorithm for construction the greedy reduced word for a permutation w that was introduced
in Section [4.1.2

Let j; > 1 be maximal such that such that g(j1,1) # 0. Let If j; = 1 then let ¢tV = g. If j; # 1 then
let
W _ (907! <9(172) o (gGimin) 7!
g =u (g(jl,l)) Y2 g(jlal)) Yi—1 ( 9ULL) ) g-
Let jo > 2 be maximal such that g™ (j2,2) # 0. If jo = 2 then let ¢ = g If jo # 2 then let
@) oy, (2027 (aDe2 T (W1
g (g<1>(j2,2)> 93\ g™ (j2.2) ve-1 (Gots ) 9

Continuing this process will produce ¢(™ which has the property that

the first nonzero entry in row j 4 1 is to the right of the first nonzero entry in row j.

Since g is invertible then g™ must be upper triangular.
Let b = ¢(™). Then

_ , 9W(2=1.2) 9(3,2) 9(2,2)
9= Wp ( (52,2 ) y3 <g<1>(j1,2)) b2 <g<1>(j2,2)>)
. ( _111) (271) (171)
Wi (gg](ljlyl) ) R (;(11,1)> o (gg(jl,l))) b (GLfact)
Let us state this structural result as a theorem. In stating Theorem it is useful to take advantage

of the corresponding structural result for a permutation w in the symmetric group, namely the box
greedy reduced word for w that is produced in Section

Theorem 4.8. Let B be the group of upper triangular invertible matrices. Let g € GL,(C). There
there exists a unique w € S, and unique c1,...,c; € F a unique b € B such that

g =y (c1) -y, (co)b,

where w = s;, - -+ 8;, is the greedy reduced word for w.
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Example 4.2. Let

76 2 4
1879
7718 6 3 5
01 12
Since
76 2 4 76 2 4
s 79l 4 [8 6 3 5
9=|s 6 3 5|26 g s 8 a
011 2 01 1 2
8 6 3 5
ooz 1 s
—yz(g)yl(g) 0 é é 6f
8 8 8
01 1 2
8 6 3 5
1 7 290§l_§
=wpEnEu(E) [ 1 1 o
00 -3 %
8 6 3 5
01 1 2
= p@u@uEr@ |, o 1 1
2
00 ¢ ¢
86 3 5
01 1 2
=@ Eus(PeDwG) [, o 5
8 8
00 0 -1

The examples

1 c12 c13 cua

0 1 ¢ c
x34(c34)x24(c24)14(C14) 23 (C23) 13 (C13) T 12(C12) = 0 0 i?’ Czj

0O O 0 1

and

hi(dy)ha(d2)h3(ds)ha(ds) - 234(c34)x24(C24) T 14(C14)T23(C23)T13(C13)T12(C12)

1 ¢ C13 Ci4 dl C12 €13 Ci14
0 1 0 d

= h(d)ha(d)ha(d)ha(da) [ oo T2 = 0 e
0 0 0 1 0 0 0 dy

show how an upper triangular matrix is written in normal form as a product of h;(d) and z;(c).
For i,j € {1,...,n} with i < j let a;; € F. The product

(H xij(aij)) is in matriz parametrization order if
1<J

zji(aji) appears before x;;(a;;) for j > i, and xj,(aj;) appears before x;i(a;) for £ > k.
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Theorem 4.9. Let g € GL,(C). There there exists a unique w € Sy, and unique c1,...,c¢ € F and
unique dy, . ..,dn, € F* and unique a;; € F fori,j € R such that

9= vin(e) -y, () - ha(dr) - hnldn) - ([ is(aiy)),

1<j

where w = s, -+ s;, be the greedy reduced word for w and the product (HKJ- xij(aij)> s in matrix

parametrization order.

7 6 2 4
1 8 79 .

Example 4.3. If g = 3 6 3 5| ain Ezxample|4.2| then
01 1 2

9 =12(3)1(5)y3(B)y2(3)ys(3)h1(8)ha (1) hs(—2) ha(— 5§ w34 (=) w24 (2)214(5)223(1) 713(3)212(6)

is an expression for g purely in terms of the row reducers, the diagonal geberators and the upper
triangular elementary matrices. ]

4.3.3 Obtaining the interchange relations from matrix multiplication

Proof of the reflection relation:

If ¢; # 0 and ¢ # 0 then
(C) (C)— cp 1 co 1 . cieo+1 ¢
yilc1)yilc2) = 1 0 1 0)°= ¢ 1
. cl+02_1 1 Co 1 _ Cl+62_1 1 co 0 1 02_1
- 1 0)\0 —c') 1 0)\0 —¢')\0 1

= y1(c1 + ¢ ha(ca)ha(—c3 M ara(ey ).

y1(c1)y1(0) = <011 é) (? é) = <(1) cf) = z12(C1).

Proof of the building relation:

If ¢ = 0 then

cic 1 0 1 0 O c3 1 0 cicg+co 1 0
1 00 0 co 1 1 0 0] = c3 10
0 0 1 0 1 0 0 0 1 1 0 0

1 0 0 cics+ce 1 0 1 0 O

=10 ¢35 1 1 0 0 0 ¢ 1

0 1 0 0 01 0 1 O

The computation for the proof of the first z-interchange relation is:
1 ¢ 1 e\ (1 a+te
0 1 0 1) \o 1
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The key computation for the proof of the h-past-y relation is:

di 0\ [c 1\ _(cdi di\ _ [cdidy’ 1\ (d2 0
0 dJ\1 0) \d 0/ U 1 o0/\0 &

Key computations for the proof of the x-past-y relations are:

1 021_61+021
0 1 1 0/ 1 0/’

1 C1 0 1 0 O 1 Cc1Cy C1 1 0 O 1 C1C9 0 1 0 C1
0 1 0 0 o 1| =10 1 0)]=10 c2 1 0 1 0 01 0],
0 0 1 0 1 0 0 O 1 0 1 0 0O 0 1 0 0 1

1 0 ¢ 1 0 0 1 ¢ O 1 0 0 1 ¢ O

01 0 0 cg 1)1 =10 c2 1] =10 c2 1 0 1 0],

0 0 1 0 1 0 0 1 0 0 1 0 0 0 1

1 0 C1 C2 1 0 C2 1 C1 (&) 1 0 1 0 0

01 0 1 01)]=({1 0 O0}J=111 01 01 ¢,

0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
1 0 0 c2 1 0 c2 1 0 cac 1 0 1 0 ¢ 10 0
01 ¢ 1 01)=11 0 ¢e]=1(1 01 01 0 0 1 —cieo
0 0 1 0 01 0 0 1 0 01 0 0 1 0 0 1

The remaining relations are derived similarly.

4.3.4 Deriving matrix multiplication from the interchange relations
Suppose that g; and go are two expressions given in the normal form of Theorem The goal is to
use the Relations B to rearrange and simplify the product g;¢s.

Step 1. The h-past-x relations and h-past-y relations and the z-past-y relations allow us to move
all the row reducers y;(c) to the left, all the elementary matrices x;;(c) to the right so that all the
diagonal generators h;(d) are in the middle.

Step 2. The hh-relations allow us to write the product of the diagonal generators in the form
h(dy,...,dy).

Step 3. The reflection relation and the building relation allow us to reduce the y-product to being a
y-product for a reduced word of a permutation. Then the theorem that the graph of reduced words is
conneted allows us to arrange this reduced word to be the greedy reduced word for w.

Step 4. The z-interchange relations allow us to put the z;;(c) into its appropriate place in the matrix
presentation order.

In combination these moves rearrange the product g;g2 into normal form.

4.4 Introducing root system notation

Roots label elementary matrices. For i € {1,...,n}, let

g; =(0,...,0,1,0,...,0) € Z™ with 1 in the ith spot and all other entries 0.
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Then
{e1,...,en} is a Z-basis of Z™.

Use the notation
Te,—e;(c) = xi5(c), fori,j € {1,...,n} with i # j.

The set of roots is
R={e;—¢;|i,je{l,...,n}and i # j}

and
the elementary matrices are the z4(c), for « € R and ¢ € F.

The positive roots label the elementary matrices in B. Let B be the group of upper triangular
invertible matrices. The positive roots are the elements of

Rt ={ei—¢j|i,j€{l,...,n} and i # j and z;;(c) € B} (Rpdef)
={e; —¢j | i,j€{1,...,n} such that i < j}.

The group of upper triangular matrices with 1 on the diagonal (unipotent upper triangular matrices)
is

U= (Hxij(aij)) | a;j € F and U is generated by {z12(c), z23(¢), ..., Tn—1n(c) | c € F}.

i<j
The simple roots are oy, ..., a,—1 given by
] =&1 — &9, QO =€2 —€3, ...,0n_1=Ep-1—En.

For o € R, let
Xo ={za(c) | c € F}.

Then
U= H X, and U is generated by {Xa,,...,Xa, }-

a€RT
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5 Bruhat decomposition and the Hecke algebra

5.1 Reviewing the normal form theorem

The normal form theorem, Theorem is the following.
Theorem 5.1. Let g € GL,(C). There there exists a unique w € S,, and unique ci,...,c¢ € F and
unique dy, ... ,d, € F* and unique a;; € F fori,j € {1,...,n} with i < j, such that
9=y (e1) - yirlee) - hadr) -+ hudn) - ([T wig(aip))
1<j
where w = s, -+ s;, be the greedy reduced word for w and the product (HKJ- xij(aij)> s in matrix
parametrization order.

This theorem has such powerful consequences that it is useful to view it state it in several slightly
different (slightly more general) incarnations. First, use the relations and Theorem to
generalize the statement from the box greedy reduced word to any chosen reduced word and use the
relations to change from the matrix parametrization order to any chosen order of the z;;(a).

Theorem 5.2. Suppose that for each w € S, a fired reduced word for w has been chosen. Also
choose a specific order on {pairs (i,j) with i,j € {1,...,n} andi < j}.

Let g € GL,(C). There there exists a unique w € S, and unique ci,...,co € F and unique dy, .. .,d, €
F* and unique a;; € F fori,j € RT such that

9=y (c1) - yi,(ce) hi(dr) - hn(dy) - (sz‘j(az‘j))v
1<j

where w = 8;, - -+ S

, 1s the chosen reduced word for w and the product <Hi<j mij(aij)) is taken in the

specific chosen order on {pairs (i,j) with i,5 € {1,...,n} and i < j}.
The next goal is to state the theorem in terms of the root system notations of Section
Let w € S,, and let w = s;, - - - 5;, be a reduced word for w. The root squence for the reduced word for
w™t given by w! =s;, -+ s;, is (B1,. .., B) given by
B1 =iy, P2=8iQiy, oo Bo=SiySiy Sip_y Qg
and, by Proposition {B1,..., B¢} =Inv(w™!) C R*. Then
Yir (1) -+ Yi,(co) = @ay (c1)siy -+ i, (o) i,

= Loy, (Cl)xsil Qig (c2) - Lsjy e 8ip_y iy (ce)siy - Sig

=Tp (c1) - LB, (co)w,
with 2, (¢1) - xg,(c;) € B. Thus, if b € GL,(FF) is upper triangular then y;, (¢1) - - - yi,(c/)b € BwB.

Theorem 5.3. Suppose that for each w € Sy, a fixed reduced word for w has been chosen. Also choose
a specific order on R*, where R™ is the set of positive roots defined in (Rpdef).
Let g € GL,(C). There there exists a unique w € S, and unique ci,...,co € F and unique dy, . ..,d, €

F* and unique ao, € F for o € R* such that
g=ap(c1) - xp,(ce) - w-hi(dr) - hn(dn) - ( H l‘a(aa))»
a€ERT
where w = s;, -+ 8;, is the chosen reduced word for w, the root sequence for the reduced word wl =

Si, -+ Siy 15 (B1,...,0Be), and the product (Ha€R+ xa(aa)> is in the specific chosen order on RT.
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5.2 The Bruhat decomposition
The following structural result is a direct consequence of the normal form results of Section

Theorem 5.4. (Bruhat decomposition) Let F be a field and let n € Z~o. Let G = GL,(F). Then
G = |_| BwB. (Bdecomp)
weW

Let w € S,, and let w = s;, - -+ 55, be a reduced word for w. Then

BwB= || wi(e1) - vi(co)B. (Beell)

Example 5.1. When n = 3, coset representatives of cosets of B in the double cosets in B\G/B

B1B = {B},
Bs1B ={yi(c)B | ce F,},
BsyB = {ya2(c)B | c € Fy},
Bs1saB = {y1(c1)y2(c2) B | e1,¢2 € Fy},
Bsys1B = {ya(c1)yi(c2) B | c1,c2 € Fy},
Bsisgs1B = {yi(c1)y2(c2)yi(c1)B | c1, ¢z, c3 € Fy},

and
B = {hi(d1)ha(d2)h3(d3)w23(c3)r13(c2)z12(c1) | crcacs € B, dy,da, d3 € F }
d1 d101 d102
= 0 dy  dacs ‘ cieacg € F9,dy, do, d3 € F; ,
0 0 ds
s0 that Card(B) = (¢ — 1)3¢>. O

5.3 The Hecke algebra H,(q) and the flag representation 1§

Let G = GL,(F;) and let B be the subgroup of upper triangular matrices in G. The Hecke algebra is
the subalgebra H,,(q) of CG given by

Halg) =3 f =" f(9)g | if br,bs € B then by by = f ¢ . (Hekdef)
geG

Define

1
Tw:F Zg, for w € S,.
| ’gGBwB

By (Bdecomp),

{Ty | we S}, is a basis of Hy(q).

The flag representation is the vector space

1§ ={v= Zv(g)g ‘ if b € B then vb=w. ;. (1BGdef)
geG
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Define
Z 9, for y € G.

gEyB

By (Beell),

w € S, and ¢1,...,¢ € F and

) ) : : f 16{
{vy’l(cl)"'ylf(cd ’ w = s, -8, is the greedy reduced word for w } is a basis of 15

The group G acts on 1% by left multiplication and the Hecke algebra H,(q) acts on 1% by right
multiplication. Via these actions 1§ is a module for CG' ® H,,(q).

5.4 Action of CG and of H,(q) on 1%

Let’s write the explicit action of Hn(q) on 1. Recall that if y € G then

Uy = Z T, so that vy = vy if b € B.
‘xEyB

The action of CG on 1% is given by
Uy = Vgy, for g € G. (GonlBG)

The following proposition provides an explicit computation of the action of Hy,(gq) on 1%.

Proposition 5.5. Let w € W and let w = s;, - -+ 5;, be a reduced word for w. Let c1,...,co € Fy.
(a) If L(ws;) > L(w) then
Vy,. (e1)yiy (ce) T Z Vy;, (e1)-yi, (co)yi(c)
cely

(b) If b(ws;) < £(w) then assume that iy =i and get
inl(01)"'%2_1(Cz—l)yi(cz)Tsi = Vyiy (e1)yiy_y (co-1) + Z Yy, (e1)+yi,_, (co—1)yilci—c™1)
CEF;
Proof. It V' € B then VT, and so
'UyTsz = ’B‘ Z yb i ’B‘ Z yTsl = 57, = (Z Zyyz ) = Z Uyy;(c)
VeB yeB c€F, beB c€F,

(a) If L(ws;) > £(w) then

Bws;B = |_| i, (c1) - - yi, (co)yi(c) B,

Clv"'7C€7C€Fq

so that {y;, (c1) -+ - vi,(co)yi(c) | c1,...,¢ce,c € Fy} is a set of representatives of the B cosets in Bws;B.
(b) If ¢(ws;) < £(w) then the reflection equation (refrel) gives that

Yy;, (e1)-yi,_, (co— Dyileo) T Zvyzl (e1)Yip_q (co—1)yi(ce)yi(c)
ceF
= Uy (1), (co—1) T Z Yyiy (e1)~yi,_, (co—1)yi(ce—c™1)
ceFx
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5.5 The product in the Hecke algebra

The following proposition provides an explicit computation of the product in H,(q).
Proposition 5.6. For w € W and i € {1,...,n},
(¢ —1)Tw + qTws;, if l(ws;) =14
TwTs,- = .
Tws, if L(ws;) = L(w) + 1.

Proof. We know
To= 3 Vylenmleo”

Cl,..5Cp

If /(ws;) = ¢(w) + 1 then Proposition a) gives

TwTs; = Z vyil(cl)“'yig(Ce)TSi = Z Yyiy (e1)-yi, (co)yilc) = Tuws; -

Clyee0sCe ClyeeCE,C

If ¢(ws;) = ¢(w) — 1 then Proposition b) gives

TwTs, = Z vyil(cl)"'yil(CZ)TSi

Cl,eenCe

= Z (in1(01)"'yiz,1(0z—1) + Z Uyz‘l(Cl)“'yig,l(Cefl)yz‘(Cz*C_l))
Cl,eenCe c€FX

= Z ( Z Uyz‘l(ﬁ)"-yig,l(czfl)) + Z <Z Z Uyz'l(01)"'1/1@,1(0571)%(01))
ClysCo—1  cp€Fg ClyesCo—1  d€EF, c€Fq

cp#d

=4 D Uy ey e F @D D Uy e, (e (@)

ClyeesCo—1 C1,--yCe—1,d€ER

= qusi + (q - 1)Tw

5.6 The flag variety, Schubert varieties and the Bruhat order
Let F be a field. For i € {1,...,n— 1} and ¢ € F, define
yi(c) =1+ (c—1)Ey — Eiy1i01 + B + B and define  y;(00) = 1.
The flag variety is
G/B ={gB | g € GL,(F,)}.

Let w € S, and let w = s;, - - - 54, be a reduced word for w. The Schubert variety indexed by w in the
flag variety is
BwB = {y;,(c1) - vyi,(ce)B | c1,...,ce € FU{o0}} (Svar)

By Theorem and the relations in (bldrel), the Schubert variety BwB does not depend on the choice
of the reduced word for w. The Bruhat order is the partial order < on S,, defined by

BwB = | | BuB. (Bhtord)

v<w
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5.6.1 Partial flag varieties, minimal length representatives and the Bruhat order on W*#

Let po= (p1, ..., pg) with pg, ..., g € Zso and pg + -+ 4+ pg = n. Let
Sy =8u x--x 8y, and let J(p) = {p1, p1 4+ po, oo 1+ -+ ek

Then elements
WH=A{weS, |ifi¢g J(u) then w(i) < w(i+1)}.

are a set of minimal length representatives of the cosets in S,,/S,.
The p-Bruhat decomposition is G = |_| BwP,.
weWH

The p-partial flag variety is
/Py ={gP. | g € GLa(F)}.

Let w € WH and let w = s;, - - - 5;, be a reduced word for w. The Schubert variety for w in the p-partial
flag variety is
BwP, = {yi (c1) - vyi,(ce)Py | c1,...,c0 € FU{o0}}
The Bruhat order on W is the partial order on W* defined by
BwP, = | | BvP,.
v<w
5.6.2 Grassmannians, partitions in a k£ x n rectangle and the dominance order

If 4 = (k,n — k) then the p-partial flag variety is the Grassmannian of k dimensional subspaces of F™,

G(F" )k = G/Pn—k) = {19Pkn—r) | 9 € GLn(F)}.

For a partition A = (Aq,..., A\g) with A1,...,A\x € Z>p and n > A\ > --- > ) define a permutation
wy € S, by
ifie{l,...,n} and i # k then w(i) < w(i + 1), and
w,\(l) =X +1, w,\(2) =Xe_1+2, ..., w/\(k—l) =X+ k—1, w>\(k:) =\ + k.
PICTURE

When p = (k,n — k) then S, ) = Sk X Sp—x and the map

{partititons \ with A\ C (n*)} W (n,n—k)

is a bijection.
A — W

Via this bijection, the Schubert varieties BwxP ,—p) in the Grassmannian G (F") are indexed by
partitions A such that A C (n¥). The dominance order on {partitions X\ with A C (n*)} is given by
setting p < A if 4 and A satisfy the conditions

ifie{l,...,k} then pi+4---4+p <A+---+A\. (Gdomorder)

If ) is a partition and A C (n¥) then

BuaPlp—i = | | BwuPrn—-

nC(nk)
pn<A
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