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22 Generators and relations for S, and GL,(F)

22.1 A presentation theorem for 5,

Let S,, be the symmetric group of permutation matrices and let
si=1+Fijiv1+ Fip1i — By — Eir141, forie {1,...,n—1}.

The following theorem shows that the symmetric group 5, is a Coxeter group.

Theorem 22.1. The symmetric group Sy is presented by generators si,...,sn—1 and relations

2
S = 1, $iSi+15i = Si+15iSi+1, SjSk = SkSj, (Crels)

forjke{l,....n—1} withk ¢ {j—1,j+ 1} andi € {1,...,n—2}.
Proof sketch. The proof requires four steps:

1)
2)
3) Relations A from relations B.
4)

Generators A in terms of generators B.

(
(2) Generators B in terms of generators A.
(

(4) Relations B from relations A.

Here

Generators A: { permutation matrices}

Relations A: { matrix multiplication of permutation matrices}

Generators B: { simple transpositions sy, ..., S,—1 }
Relations B: { the relations in (Crels) }
Further details of the proof are given in Section [22.1.3 O

22.1.1 Length and reduced words

Let w € Sp,. A reduced word for w is an expression w = s;, - - - s;, with i1,...,4 € {1,...,n — 1} and
¢ minimal.
The length of w is £(w), the length of a reduced word for w.

Proposition 22.2. Let
Inv(w) ={(4,75) | i, € {1,...,n} withi < j and w(i) > w(j)}.

Then
{(w) = Card(Inv(w)).
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22.1.2 A reduced word algorithm for w € S,

Let w € S,,. The following is an explicit algorithm for producing a reduced word for w.
Let 71 > 1 be maximal such that w;1 # 0. Let

(1) {w, if j1 does not exist,
w =

s1---8j,—1w, if j1 exists.

Let jo > 2 be maximal such that w]u?) £ 0. If j, does not exist set w® = w™®) and if j, does exist set

2) w®, if jo does not exist,
w =
SS9 Sjgflw(l), if jQ exists.
Continue this process to produce w, ..., w™. Then w™ =1 and
w="---(8j,-1--52)(8j,—1---51) s a reduced word for w. (gdyredwd)

22.1.3 Proof of the presentation theorem for 5,

The simple transpositions in S, are the matrices s; = s; 41,

i i+l
1
1

si= ¢ 1 . forie{l,...,n—1}. (22.1)

i+1 1 0

1
1

Proposition 22.3. The symmetric group S, is presented by generators si, So,...,Sn_1 and relations
s2=1 and 5jSj418] = 8j4+15j8j41 and S8y = S¢Sk, (22.2)

fori gk le{l,...;.n—1} withj#n—1and k #¢+1.

Proof.
Generators A: the set of permutation matrices.
Relations A: all products of permutations wyws given by matrix multiplication.
Generators B: s1,...,8,-1.

Relations B: As given in (22.2).
The proof is accomplished in four steps:

1
2

)
)
3) Write generators A in terms of generators B.
4)

(1) Write generators B in terms of generators A.
(2) Deduce relations B from relations A.

(

(4) Deduce relations A from relations B.
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Step 1: Generators B in terms of generators A. This is provided by ti

Step 2: Relations B from relations A. This step is given the following matrix computations:

=066

01 0\ /1 00\/0 10 00 1
818281210 0 1 1 0]=10 1
00 1/\o 10/ \o o1 10 0
and
100\ /0 10\ /100 00 1
sos1s9o=(0 0 1] |1 0 o]0 0 1]=(0 10
010/ \0oo0o1/\o1o0 10 0
so that s159581 = s98159 and
0100\ /1000 010 0
e |t OO0OOfO T 00 _[1000
=10 01 0]looo 1] oo o1
0001/ \0oo0 10 00 1 0
and
1 000\ /0100 0100
o000l fr 000 f1o000
#1710 00 1flo o 1 0] oo o1
0010/ \0oo0O0O:1 00 1 0

so that s1s3 = s3s1.

Step 3: Generators A in terms of generators B.
Let w € S,,.
Let j; € {1,...,n} be such that w(j1,1) = 1 and let w() = 5155 - Sj—1W.
Let jo € {2,...,n} be such that w()(j2,2) = 1 and let w® = sys3---5j,_1.
Continue this process to obtain

. (8283 e 5]-271)(5152 e 5j171)w = 1.
Thus
w= (Sjl—l T 5231)(8]‘2_1 e 3332) cee

The expression for w is a reduced word for w and a subword of the reduced word of the longest element
given by
(Snfl tee 5251)(57171 te 5352) te (5n715n72)5n71 = woq.

Step 4: Relations A from relations B.
5i(Sj—1-++8251) = Sj—1 - 8i+25i8i+15iSi—1 - 5251, by the third set of relations in (22.2),

= Sj_1-""Si+25i+15iSi+15i—1 - - S251, by the second set of relations in (22.2),
= (81" Si4+28i+15iSi—1 - $251)S;, by the third set of relations in 1}

So s;w can be written in normal form. By Step 3, w; can be written as a product of simple transpo-
sitions, so one simple transposition at a time, wyw can be written in normal form. ]
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If
0 0 0 1 1 000 1 000
0 010 0 0 01 01 00
=170 0 0 then s3(s2s3)(s1s2w) = s3(s253) 0o010l=%loo0o0 1l 1,
01 00 01 00 0010
so that w = (s251)(s382)s3.

22.1.4 The graph of reduced words for w € S,
Define a graph I'(w) with

Vertices: {reduced words of w}
Edges: wu—u ifu =s; - -s;, is obtained from u = s;, - - - sj, by applying
a relation s;5;415; = Si+15i8i+1 or a relation s;s; = sjs; with j & {i — 1,7+ 1}.

Theorem 22.4. Let w € S,,. The graph T'(w) of reduced words of w is connected.

Proof. Let

W= 8 -5 and w=8j, "5y,

be reduced words.

Case 1: i1 = j1. The two reduced words for w have the same first letter. By induction, the reduced

words v = s;, -+ 8;, and v = sj, - - - 55, are connected.

Case 2: i1 # j1. Since £(sj,) < £(w) then there exists k such that s;,w = s;, -+~ 85, | SirSiy .~ Si
Case 2a: k # ¢. Then

0°

w = 8jy - 5,
W = S51 841 " " Sig_ 1545 Sigq1 " " Sig and
W = Sj; * 84,
are all reduced words for w. Since the first factor is the same in the first two of these they are

connected. Since the last factor is the same in the last two of these they are connected. So, by
transitivity, the first is connected to the last.

Case 2b: k= ( and j1 & {i1 — 1,91 + 1}. Then
W= 85+ S5
W = 858y " Siy_q
w =88 -8, and
W = Sj; S84y *** Sy

and the first two are connected since they have the same first letter, the middle two are connected by
the move s;,5;;, = s;,5;; and the last two are connected since they have the same first letter.

Case 2c: k= { and j; € {i1 —1,i1+}. Then

W = Si;Siy " SZ‘Z,

W = 841551 5i1 """ Sip_1.345 Sirg1 """ Sig1y

W = 851801851 " " Sip_ 1835 S04 """ i1 and

W = 85185y """ Sjgs
and the first two are connected since they have the same first letter, the middle two are connected by
the move s;, 55,55, = 5j,5;,5j, and the last two are connected since they have the same first letter. [J
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22.2 A presentation theorem for GL, ()

Let F be a field, let n € Z~( and let M, (F) be the set of n x n matrices with entries in F.

e An n x n invertible matriz is an n X n matrix A € M, (F) such that

there exists A~! € M, (F) such that A7'A=1and AA~!=1.

e The general linear group is

GL,(F) = {n x n invertible matrices with entries in F}.

The invertible elements of the field F are the elements of
F*={deF |d+#0} ={1x1 invertible matrices with entries in F} = GL;(F).
Theorem 22.5. The group GL,(F) is presented by generators

celF,dy,...,d, e F*,
yi(c)? h](d)v l‘kg(c), for (S {17 RN (2 1}5] € {17 s ’n} (GGHSB)
k0 e{l,...,n} with k <.

with the following relations:

o The reflection relation is

-1 -1 -1 -
; hi(ca)hiv1(— ii ; 0,
yi(er)yi(ea) =4V e+ & hileahin (=6 riinle) Z,f 27 (vefrel)
ziiv1(c1), if g = 0.
e The building relation s
yi(en)yiv1(c2)yi(es) = yirr(cs)yicics + c2)yivi(cr). (bldrel)
e The x-interchange relations are
zij(c1)zij(c2) = zij(c1 + ca),
zij(er)zik(c2) = wik(c2)wij(cr), zik(e1)zjr(c2) = wjn(c2)win(cr), (xint)
zij(c1)zjk(c2) = zjk(ca)wij(cr)zin(crca), zjk(c1)zij(c2) = wij(ca)zjp(cr)zin(—cicz),
where 1 < j < k.
e The h-processing relations are
hl(dl)h](dg) = h](dg)hl(dl) and hl(dl)hl(dg) = hi(dldg), (hhrel)
e Letting h(dy,...,dy,) = hi(dy) - hyp(dy), the h-past-y relation is
h(dy, ... dp)yi(c) = yi(edidi ) h(dy, . .., di1,digr, diydiga, - . ., dy). (hpyrel)
o Letting h(dy,...,dy) = hi(dy)---hy(d,), the h-past-z relation is
h(dy, ..., dn)zij(c) = mij(cdid; h(dy, . . . dn). (hpxrel)
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o The x-past-y relations are

zii+1(c1)yi(c2) = yi(er + c2)xiit1(0),
zig(c1)yr(c2) = yr(c2)wir(cic2) @i pt1(c1), T py1(c1)yr(c2) = yr(c2)zi(cr), (xpyrel)

fUij(Cl)?Ji(@) = yi(02)f’3i+1,j(01), 93i+1,j(61)yi(02) = yi(C2)$ij(C1)$i+1,j(—6162),

where 1 < k and i+ 1 < j.

Proof sketch.
Generators A: { invertible matrices}
Relations A: { matrix multiplication of invertible matrices}
Generators B: { row reducers, diagonal generators and elementary matrices }
Relations B: { the interchange relations in the statement }

The proof requires four steps:

1)
2)
3) Relations A from relations B.
4)

(1) Generators A in terms of generators B.
(2) Generators B in terms of generators A.
(

(4) Relations B from relations A.

Step(2), which requires the expression of the Generators B in terms of the generators A, is provided

by the definitions in section [22.2.1

Step (4), which derives the Relations B from relations A (matrix multiplicaton), is checked in section
22.2.3]

Step (1), which describes how to write an invertible matrix in terms of the elementary matrices is

given in section [22.2.2]

Step (3), which descirbes how to derive Relations A (matrix multiplication) from the relations B, is
checked in section|22.2.4
O

22.2.1 Elementary matrices and row reducers

Let
E;j be the n x n matrix with 1 in the (7, j) entry and 0 elsewhere.

o The elementary matrices in GLy(F) are the matrices
sij =1—E; — Ejj + B + By, fori,j e {1,...,n} with i # j,

zij(c) = 1+ cEyj, fori,j € {l,...,n} withi # j and c € F,
hi(d) =14 (d — 1)Ey, fori e {1,...,n} and d € GL,(F).
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e The row reducers are y;(c) = x;;11(c)siip1 fori € {1,...,n —1} and c € F.

1 1

c 1
yi(c) = 1 0 and yi(e)” = 1

1 1
22.2.2 A reduced word algorithm for g € GL,(F)

Let g € GL,(F) so that g is an n x n invertible matrix. The following is an explicit algorithm for
writing g as a product of row reducers y;(c), diagonal generators h;(d) and upper triangular elementary
matrices x;j(ai;). This procedure is no different than the usual row reduction procedure: namely, a
way of writing an invertible matrix ¢ in a ‘normal form’ as a product of elementary matrices by the
‘row reduction’ algorithm.

Let j; > 1 be maximal such that such that g(j;,1) # 0. Let If j; = 1 then let ¢() = g. If j; # 1 then

let
W, (s (ea2\ T (gu m))*l
g =u (g(jhl)) Y2 (9(]‘171)) i1 50n) g-
Let jo > 2 be maximal such that g™ (ja,2) # 0. If jo = 2 then let g = (M. If jo # 2 then let
2) (1)(2,2) -1 (1)(3,2 -1 1) (jp—1,2 -1 1
9% = (;<1>((J'2,2)> v <5<1>(j2,2))) Yt (gg<1>j(zjz,2) )) gt

Continuing this process will produce ¢(™ which has the property that

the first nonzero entry in row j + 1 is to the right of the first nonzero entry in row j.

Since ¢ is invertible then ¢(™ must be upper triangular.
Let b= ¢g(™). Then

B ‘ g (ja—1,2) g1 (3,2) g1 (2,2)
9= ( 9(1)(2j2»2) ) s <9<1)(j1,2)) Y2 (9“)(]'2,2)))

(Y11 (g(gj(lﬂ,ll’)l)> Y (gg((i’,ll))) u (5(21{,11)))) b

The examples

1 ci2 c13 cua

0 1 ¢ c
x34(c34)x24(c24)14(C14) 23 (C23) 2 13(C13) T 12(C12) = 0 0 ig Czj

0 O 0 1

and

hi(dq)ha(d2)hs(c3)ha(ca)zsa(csa)xaa(caa)zia(cia)zas(cas)iz(ciz)zi2(ci2)

1 ¢ C13 Ci4 dl C12 €13 Ci14
0 1 0 d

= ha(d)ha(d)ha(es)halen) [ oo T2 =0
0 0 0 1 0 0 0 dy4

show how an upper triangular matrix is written in normal form as a product of h;(d) and z;(c).
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Example 22.1. Let

7T 6 2 4
s 79
9718 6 3 5
011 2
Since
7 6 2 4 7T 6 2 4
1187 9] |8 6 3 5
g—8635—y2(§)0%58g%
01 1 2 0o 1 1 2
8 6 3 5
N T T
—y2(§)yl(§) 0 é é fﬁ%
g8 8 8
0 1 1 2
8§ 6 3 5)
1 7 20\ | 0 F ~3
=y2(3)y1(5)ys(F) 0 il 11 28
00 —f ¥
8 6 3 )
01 1 2
= y2()y1(§)ys(F)w2(3) 00 -1 _15
2 )
-
8 6 3 5)
01 1 2
=()n(Dw(Pe@wG) | o 5 1
8 8
oo o -1
then

9=v2(5)y1 ()3 (E)y2(3)ys(3)h1(8)ha(1)h3(— ) ha(— 55 ) w34(— B ) w24 (2)214(5) w23 (1) 213(3)212(6)

is an expression for g purely in terms of the row reducers, the diagonal geberators and the upper
triangular elementary matrices. L]

For i,j € {1,...,n} with i < j let a;; € F. The product

(H xij(aij)) is in matriz parametrization order if
i<j
zji(aji) appears before z;(ai;) for j > i, and xj,(aj;) appears before x;i(a;) for £ > k.
Theorem 22.6. Let g € GL,(C). There there exists a unique w € S,, and unique ci,...,c; € F and
unique dy, . ..,dn, € F* and unique a;; € F fori,j € R such that
9= yar(er) - yig(ee) - ha(dr) -+ hadn) - ([ ig(aig))

1<j

where w = s;, - -+ s;, be the greedy reduced word for w and the product (Hi<j xij(aij)> s in matrix
parametrization order.
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22.2.3 Obtaining the interchange relations from matrix multiplication

Proof of the reflection relation:

If ¢1 # 0 and ¢y # 0 then
() (ca) = c1 1 co 1\  fce+1 ¢
yi(c1)yilc2) = 1 0 1 0]~ ¢ 1
. cl+c§1 1\ (¢ 1 . cl+c§1 1\ (c2 0 1 051
N 1 0)\0 —c') "~ 1 0)\0 —c')\0 1

= y1(c1 + &3 Hhi(ea)ha(—c3 z1a(cz ).

y1(c1)y1(0) = (? é) (? (1)> = ((1) Cf) = z12(c1).

Proof of the building relation:

If ¢ = 0 then

cic 1 0 1 0 O cg 1 0 cics+co 1 0
1 0 0 0 co 1 1 0 0] = c3 10
0 0 1 0 1 0 0 0 1 1 0 0

1 0 0 cics+ce 1 0 1 0 O

=10 c3 1 1 0 0 0 ¢ 1

0 1 0 0 01 0 1 O

The computation for the proof of the first z-interchange relation is:

1 ¢ 1 e\ (1 ca+e
0 1 0 1/ \o 1

The key computation for the proof of the h-past-y relation is:

di 0\ [c 1\ [ecdi di\ _ [cdidy’ 1\ (d2 0
0 d)J\1 0) \d 0/ U 1 o0/\0 &

Key computations for the proof of the x-past-y relations are:

1 ¢\ (2 1\  fer+e 1
0 1 1 0) 1 0)’

1 C1 0 1 0 0 1 Cc1Cy C1 1 0 0 1 C1C2 0 1 0 C1
0 1 0 0 o 1] =10 1 =(0 ¢ 1 0O 1 O 01 0],
0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 00 1

1 0 ¢ 1 0 0 1 ¢ O 1 0 0 1 ¢ O

01 0 0 c2 1)1 =10 c2 1] =10 c2 1 0O 1 0],

0 0 1 0 1 0 0 1 0 0 1 0 0 0 1

1 0 C1 C2 1 0 C2 1 C1 Co 1 0 1 0 0

01 0 1 01)=({1 0 O0J=1{11 01 01 ¢,

0 0 1 0 0 1 0 0 0 0 1 0 0 1
1 0 0 C2 cac 1 0 ca 1 0 1 0 g 10 0
0 1 c1 1 1 0 ez]=1(1 01 01 0 0 1 —cico
0 0 0 0 1 0 0 1 0 01 0 0 1 0 0 1

The remaining relations are derived similarly.
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22.2.4 Deriving matrix multiplication from the interchange relations

Suppose that g; and go are two expressions given in the normal form of Theorem The goal is to
use the Relations B to rearrange and simplify the product g;go.

Step 1. The h-past-x relations and h-past-y relations and the x-past-y relations allow us to move
all the row reducers y;(c) to the left, all the elementary matrices x;;(c) to the right so that all the
diagonal generators h;(d) are in the middle.

Step 2. The hh-relations allow us to write the product of the diagonal generators in the form
h(dy,...,dy).

Step 3. The reflection relation and the building relation allow us to reduce the y-product to being a
y-product for a reduced word of a permutation. Then the theorem that the graph of reduced words is
conneted allows us to arrange this reduced word to be the greedy reduced word for w.

Step 4. The z-interchange relations allow us to put the x;;(c) into its appropriate place in the matrix
presentation order.

In combination these moves rearrange the product g;gs into normal form.
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