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22 Generators and relations for Sn and GLn(F)
22.1 A presentation theorem for Sn

Let Sn be the symmetric group of permutation matrices and let

si = 1 + Ei,i+1 + Ei+1,i → Eii → Ei+1,i+1, for i ↑ {1, . . . , n→ 1}.

The following theorem shows that the symmetric group Sn is a Coxeter group.

Theorem 22.1. The symmetric group Sn is presented by generators s1, . . . , sn→1 and relations

s2j = 1, sisi+1si = si+1sisi+1, sjsk = sksj , (Crels)

for j, k ↑ {1, . . . , n→ 1} with k ↓↑ {j → 1, j + 1} and i ↑ {1, . . . , n→ 2}.

Proof sketch. The proof requires four steps:

(1) Generators A in terms of generators B.

(2) Generators B in terms of generators A.

(3) Relations A from relations B.

(4) Relations B from relations A.

Here

Generators A: { permutation matrices}

Relations A: { matrix multiplication of permutation matrices}

Generators B: { simple transpositions s1, . . . , sn→1 }

Relations B: { the relations in (Crels) }

Further details of the proof are given in Section 22.1.3.

22.1.1 Length and reduced words

Let w ↑ Sn. A reduced word for w is an expression w = si1 · · · siω with i1, . . . , iω ↑ {1, . . . , n→ 1} and
ω minimal.

The length of w is ω(w), the length of a reduced word for w.

Proposition 22.2. Let

Inv(w) = {(i, j) | i, j ↑ {1, . . . , n} with i < j and w(i) > w(j)}.

Then

ω(w) = Card(Inv(w)).
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22.1.2 A reduced word algorithm for w ↑ Sn

Let w ↑ Sn. The following is an explicit algorithm for producing a reduced word for w.
Let j1 > 1 be maximal such that wj,1 ↓= 0. Let

w(1) =

{
w, if j1 does not exist,

s1 · · · sj1→1w, if j1 exists.

Let j2 > 2 be maximal such that w(1)
j,2 ↓= 0. If j2 does not exist set w(2) = w(1) and if j2 does exist set

w(2) =

{
w(1), if j2 does not exist,

s2 · · · sj2→1w(1), if j2 exists.

Continue this process to produce w(1), . . . , w(n). Then w(n) = 1 and

w = · · · (sj2→1 · · · s2)(sj1→1 · · · s1) is a reduced word for w. (gdyredwd)

22.1.3 Proof of the presentation theorem for Sn

The simple transpositions in Sn are the matrices si = si,i+1,

si =

i i+1







1
. . .

1
i 0 1

i+1 1 0
1

. . .

1

, for i ↑ {1, . . . , n→ 1}. (22.1)

Proposition 22.3. The symmetric group Sn is presented by generators s1, s2, . . . , sn→1 and relations

s2i = 1 and sjsj+1sj = sj+1sjsj+1 and sksω = sωsk, (22.2)

for i, j, k, ω ↑ {1, . . . , n→ 1} with j ↓= n→ 1 and k ↓= ω± 1.

Proof.

Generators A: the set of permutation matrices.
Relations A: all products of permutations w1w2 given by matrix multiplication.
Generators B: s1, . . . , sn→1.
Relations B: As given in (22.2).

The proof is accomplished in four steps:

(1) Write generators B in terms of generators A.

(2) Deduce relations B from relations A.

(3) Write generators A in terms of generators B.

(4) Deduce relations A from relations B.
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Step 1: Generators B in terms of generators A. This is provided by (22.1).

Step 2: Relations B from relations A. This step is given the following matrix computations:

s21 =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)

s1s2s1 =




0 1 0
1 0 0
0 0 1








1 0 0
0 0 1
0 1 0








0 1 0
1 0 0
0 0 1



 =




0 0 1
0 1 0
1 0 0





and

s2s1s2 =




1 0 0
0 0 1
0 1 0








0 1 0
1 0 0
0 0 1








1 0 0
0 0 1
0 1 0



 =




0 0 1
0 1 0
1 0 0





so that s1s2s1 = s2s1s2 and

s1s3 =





0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 =





0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0





and

s3s1 =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



 =





0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0





so that s1s3 = s3s1.

Step 3: Generators A in terms of generators B.

Let w ↑ Sn.
Let j1 ↑ {1, . . . , n} be such that w(j1, 1) = 1 and let w(1) = s1s2 · · · sj1→1w.
Let j2 ↑ {2, . . . , n} be such that w(1)(j2, 2) = 1 and let w(2) = s2s3 · · · sj2→1.
Continue this process to obtain

· · · (s2s3 · · · sj2→1)(s1s2 · · · sj1→1)w = 1.

Thus
w = (sj1→1 · · · s2s1)(sj2→1 · · · s3s2) · · · .

The expression for w is a reduced word for w and a subword of the reduced word of the longest element
given by

(sn→1 · · · s2s1)(sn→1 · · · s3s2) · · · (sn→1sn→2)sn→1 = w0.

Step 4: Relations A from relations B.

si(sj→1 · · · s2s1) = sj→1 · · · si+2sisi+1sisi→1 · · · s2s1, by the third set of relations in (22.2),

= sj→1 · · · si+2si+1sisi+1si→1 · · · s2s1, by the second set of relations in (22.2),

= (sj→1 · · · si+2si+1sisi→1 · · · s2s1)si, by the third set of relations in (22.2),

So siw can be written in normal form. By Step 3, w1 can be written as a product of simple transpo-
sitions, so one simple transposition at a time, w1w can be written in normal form.
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If

w =





0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0



 then s3(s2s3)(s1s2w) = s3(s2s3)





1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



 = s3





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 = 1,

so that w = (s2s1)(s3s2)s3.

22.1.4 The graph of reduced words for w ↑ Sn

Define a graph !(w) with

Vertices: {reduced words of w}
Edges: u ↔ u↑ if u↑ = si1 · · · siω is obtained from u = sj1 · · · sjω by applying

a relation sisi+1si = si+1sisi+1 or a relation sisj = sjsi with j ↓↑ {i→ 1, i+ 1}.

Theorem 22.4. Let w ↑ Sn. The graph !(w) of reduced words of w is connected.

Proof. Let
w = si1 · · · siω and w = sj1 · · · sjω

be reduced words.

Case 1: i1 = j1. The two reduced words for w have the same first letter. By induction, the reduced
words v = si2 · · · siω and v = sj2 · · · sjω are connected.

Case 2: i1 ↓= j1. Since ω(sj1w) < ω(w) then there exists k such that sj1w = si1 · · · sik→1!!siksik+1 · · · siω .
Case 2a: k ↓= ω. Then

w = sj1 · · · sjω
w = sj1si1 · · · sik→1!!siksik+1 · · · siω and

w = si1 · · · siω
are all reduced words for w. Since the first factor is the same in the first two of these they are
connected. Since the last factor is the same in the last two of these they are connected. So, by
transitivity, the first is connected to the last.

Case 2b: k = ω and j1 ↓↑ {i1 → 1, i1 + 1}. Then

w = sj1 · · · sjω ,
w = sj1si1 · · · siω→1 ,

w = si1sj1 · · · siω→1 and

w = si1si2 · · · siω
and the first two are connected since they have the same first letter, the middle two are connected by
the move sj1si1 = sj1si1 and the last two are connected since they have the same first letter.

Case 2c: k = ω and j1 ↑ {i1 → 1, i1+}. Then

w = si1si2 · · · siω ,
w = si1sj1si1 · · · sir→1!!sirsir+1 · · · siω→1 ,

w = sj1si1sj1 · · · sir→1!!sirsir+1 · · · siω→1 , and

w = sj1sj2 · · · sjω ,

and the first two are connected since they have the same first letter, the middle two are connected by
the move si1sj1si1 = sj1si1sj1 and the last two are connected since they have the same first letter.
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22.2 A presentation theorem for GLn(F)
Let F be a field, let n ↑ Z>0 and let Mn(F) be the set of n↗ n matrices with entries in F.

• An n↗ n invertible matrix is an n↗ n matrix A ↑ Mn(F) such that

there exists A→1 ↑ Mn(F) such that A→1A = 1 and AA→1 = 1.

• The general linear group is

GLn(F) = {n↗ n invertible matrices with entries in F}.

The invertible elements of the field F are the elements of

F↓ = {d ↑ F | d ↓= 0} = {1↗ 1 invertible matrices with entries in F} = GL1(F).

Theorem 22.5. The group GLn(F) is presented by generators

yi(c), hj(d), xkω(c), for

c ↑ F, d1, . . . , dn ↑ F↓,
i ↑ {1, . . . , n→ 1}, j ↑ {1, . . . , n}
k, ω ↑ {1, . . . , n} with k < ω.

(GensB)

with the following relations:

• The reflection relation is

yi(c1)yi(c2) =

{
yi(c1 + c→1

2 )hi(c2)hi+1(→c→1
2 )xi,i+1(c

→1
2 ), if c2 ↓= 0,

xi,i+1(c1), if c2 = 0.
(refrel)

• The building relation is

yi(c1)yi+1(c2)yi(c3) = yi+1(c3)yi(c1c3 + c2)yi+1(c1). (bldrel)

• The x-interchange relations are

xij(c1)xij(c2) = xij(c1 + c2),

xij(c1)xik(c2) = xik(c2)xij(c1), xik(c1)xjk(c2) = xjk(c2)xik(c1), (xint)

xij(c1)xjk(c2) = xjk(c2)xij(c1)xik(c1c2), xjk(c1)xij(c2) = xij(c2)xjk(c1)xik(→c1c2),

where i < j < k.

• The h-processing relations are

hi(d1)hj(d2) = hj(d2)hi(d1) and hi(d1)hi(d2) = hi(d1d2), (hhrel)

• Letting h(d1, . . . , dn) = h1(d1) · · ·hn(dn), the h-past-y relation is

h(d1, . . . dn)yi(c) = yi(cdid
→1
i+1)h(d1, . . . , di→1, di+1, di, di+2, . . . , dn). (hpyrel)

• Letting h(d1, . . . , dn) = h1(d1) · · ·hn(dn), the h-past-x relation is

h(d1, . . . , dn)xij(c) = xij(cdid
→1
j

)h(d1, . . . , dn). (hpxrel)
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• The x-past-y relations are

xi,i+1(c1)yi(c2) = yi(c1 + c2)xi,i+1(0),

xik(c1)yk(c2) = yk(c2)xik(c1c2)xi,k+1(c1), xi,k+1(c1)yk(c2) = yk(c2)xik(c1), (xpyrel)

xij(c1)yi(c2) = yi(c2)xi+1,j(c1), xi+1,j(c1)yi(c2) = yi(c2)xij(c1)xi+1,j(→c1c2),

where i < k and i+ 1 < j.

Proof sketch.

Generators A: { invertible matrices}

Relations A: { matrix multiplication of invertible matrices}

Generators B: { row reducers, diagonal generators and elementary matrices }

Relations B: { the interchange relations in the statement }

The proof requires four steps:

(1) Generators A in terms of generators B.

(2) Generators B in terms of generators A.

(3) Relations A from relations B.

(4) Relations B from relations A.

Step(2), which requires the expression of the Generators B in terms of the generators A, is provided
by the definitions in section 22.2.1.

Step (4), which derives the Relations B from relations A (matrix multiplicaton), is checked in section
22.2.3.

Step (1), which describes how to write an invertible matrix in terms of the elementary matrices is
given in section 22.2.2.

Step (3), which descirbes how to derive Relations A (matrix multiplication) from the relations B, is
checked in section 22.2.4.

22.2.1 Elementary matrices and row reducers

Let
Eij be the n↗ n matrix with 1 in the (i, j) entry and 0 elsewhere.

• The elementary matrices in GLn(F) are the matrices

sij = 1→ Eii → Ejj + Eij + Eji, for i, j ↑ {1, . . . , n} with i ↓= j,

xij(c) = 1 + cEij , for i, j ↑ {1, . . . , n} with i ↓= j and c ↑ F,

hi(d) = 1 + (d→ 1)Eii, for i ↑ {1, . . . , n} and d ↑ GL1(F).

161



Advanced Discrete Math MAST90030 notes, Arun Ram October 4, 2025

• The row reducers are yi(c) = xi,i+1(c)si,i+1 for i ↑ {1, . . . , n→ 1} and c ↑ F.

yi(c) =





1
. . .

1
c 1
1 0

1
. . .

1





and yi(c)
→1 =





1
. . .

1
0 1
1 →c

1
. . .

1





22.2.2 A reduced word algorithm for g ↑ GLn(F)

Let g ↑ GLn(F) so that g is an n ↗ n invertible matrix. The following is an explicit algorithm for
writing g as a product of row reducers yi(c), diagonal generators hi(d) and upper triangular elementary
matrices xij(aij). This procedure is no di”erent than the usual row reduction procedure: namely, a
way of writing an invertible matrix g in a ‘normal form’ as a product of elementary matrices by the
‘row reduction’ algorithm.

Let j1 > 1 be maximal such that such that g(j1, 1) ↓= 0. Let If j1 = 1 then let g(1) = g. If j1 ↓= 1 then
let

g(1) = y1
(

g(1,1)
g(j1,1)

)→1
y2

(
g(1,2)
g(j1,1)

)→1
· · · yj1→1

(
g(j1→1,1)
g(j1,1)

)→1
g.

Let j2 > 2 be maximal such that g(1)(j2, 2) ↓= 0. If j2 = 2 then let g(2) = g(1). If j2 ↓= 2 then let

g(2) = y2
(

g
(1)(2,2)

g(1)(j2,2)

)→1
y3

(
g
(1)(3,2)

g(1)(j2,2)

)→1
· · · yj2→1

(
g
(1)(j2→1,2)
g(1)(j2,2)

)→1
g(1).

Continuing this process will produce g(n) which has the property that

the first nonzero entry in row j + 1 is to the right of the first nonzero entry in row j.

Since g is invertible then g(n) must be upper triangular.
Let b = g(n). Then

g = · · · (yj2→1

(
g
(1)(j2→1,2)
g(1)(j2,2)

)
· · · y3

(
g
(1)(3,2)

g(1)(j1,2)

)
y2

(
g
(1)(2,2)

g(1)(j2,2)

)
)

· (yj1→1

(
g(j1→1,1)
g(j1,1)

)
· · · y2

(
g(2,1)
g(j1,1)

)
y1

(
g(1,1)
g(j1,1)

)
) · b

The examples

x34(c34)x24(c24)x14(c14)x23(c23)x13(c13)x12(c12) =





1 c12 c13 c14
0 1 c23 c24
0 0 1 c34
0 0 0 1





and

h1(d1)h2(d2)h3(c3)h4(c4)x34(c34)x24(c24)x14(c14)x23(c23)x13(c13)x12(c12)

= h1(d1)h2(d2)h3(c3)h4(c4)





1 c12 c13 c14
0 1 c23 c24
0 0 1 c34
0 0 0 1



 =





d1 c12 c13 c14
0 d2 c23 c24
0 0 d3 c34
0 0 0 d4



 .

show how an upper triangular matrix is written in normal form as a product of hi(d) and xjk(c).

162



Advanced Discrete Math MAST90030 notes, Arun Ram October 4, 2025

Example 22.1. Let

g =





7 6 2 4
1 8 7 9
8 6 3 5
0 1 1 2



 .

Since

g =





7 6 2 4
1 8 7 9
8 6 3 5
0 1 1 2



 = y2(
1
8)





7 6 2 4
8 6 3 5
0 58

8
53
8

67
8

0 1 1 2





= y2(
1
8)y1(

7
8)





8 6 3 5
0 3

4
1
4 →3

8
0 58

8
53
8

67
8

0 1 1 2





= y2(
1
8)y1(

7
8)y3(

29
4 )





8 6 3 5
0 3

4
1
4 →3

8
0 1 1 2
0 0 →5

8 →49
8





= y2(
1
8)y1(

7
8)y3(

29
4 )y2(

3
4)





8 6 3 5
0 1 1 2
0 0 →1

2 →15
8

0 0 →5
8 →49

8





= y2(
1
8)y1(

7
8)y3(

29
4 )y2(

3
4)y3(

4
5)





8 6 3 5
0 1 1 2
0 0 →5

8 →49
8

0 0 0 →71
40





then

g = y2(
1
8)y1(

7
8)y3(

29
4 )y2(

3
4)y3(

4
5)h1(8)h2(1)h3(→

5
8)h4(→

71
40)x34(→

49
8 )x24(2)x14(5)x23(1)x13(3)x12(6)

is an expression for g purely in terms of the row reducers, the diagonal geberators and the upper

triangular elementary matrices.

For i, j ↑ {1, . . . , n} with i < j let aij ↑ F. The product
(∏

i<j

xij(aij)
)

is in matrix parametrization order if

xjk(ajk) appears before xik(aik) for j > i, and xjω(ajω) appears before xik(aik) for ω > k.

Theorem 22.6. Let g ↑ GLn(C). There there exists a unique w ↑ Sn and unique c1, . . . , cω ↑ F and

unique d1, . . . , dn ↑ F↓
and unique aij ↑ F for i, j ↑ R+

such that

g = yi1(c1) · · · yiω(cω) · h1(d1) · · ·hn(dn) ·
(∏

i<j

xij(aij)
)
,

where w = si1 · · · siω be the greedy reduced word for w and the product

(∏
i<j

xij(aij)
)

is in matrix

parametrization order.
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22.2.3 Obtaining the interchange relations from matrix multiplication

Proof of the reflection relation:

If c1 ↓= 0 and c2 ↓= 0 then

y1(c1)y1(c2) =

(
c1 1
1 0

)(
c2 1
1 0

)
=

(
c1c2 + 1 c1

c2 1

)

=

(
c1 + c→1

2 1
1 0

)(
c2 1
0 →c→1

2

)
=

(
c1 + c→1

2 1
1 0

)(
c2 0
0 →c→1

2

)(
1 c→1

2
0 1

)

= y1(c1 + c→1
2 )h1(c2)h2(→c→1

2 )x12(c
→1
2 ).

If c2 = 0 then

y1(c1)y1(0) =

(
c1 1
1 0

)(
0 1
1 0

)
=

(
1 c1
0 1

)
= x12(c1).

Proof of the building relation:



c1 1 0
1 0 0
0 0 1








1 0 0
0 c2 1
0 1 0








c3 1 0
1 0 0
0 0 1



 =




c1c3 + c2 1 0

c3 1 0
1 0 0





=




1 0 0
0 c3 1
0 1 0








c1c3 + c2 1 0

1 0 0
0 0 1








1 0 0
0 c1 1
0 1 0





The computation for the proof of the first x-interchange relation is:
(
1 c1
0 1

)(
1 c2
0 1

)
=

(
1 c1 + c2
0 1

)

The key computation for the proof of the h-past-y relation is:
(
d1 0
0 d2

)(
c 1
1 0

)
=

(
cd1 d1
d2 0

)
=

(
cd1d

→1
2 1

1 0

)(
d2 0
0 d1

)

Key computations for the proof of the x-past-y relations are:
(
1 c1
0 1

)(
c2 1
1 0

)
=

(
c1 + c2 1

1 0

)
,




1 c1 0
0 1 0
0 0 1








1 0 0
0 c2 1
0 1 0



 =




1 c1c2 c1
0 1 0
0 0 1



 =




1 0 0
0 c2 1
0 1 0








1 c1c2 0
0 1 0
0 0 1








1 0 c1
0 1 0
0 0 1



 ,




1 0 c1
0 1 0
0 0 1








1 0 0
0 c2 1
0 1 0



 =




1 c1 0
0 c2 1
0 1 0



 =




1 0 0
0 c2 1
0 1 0








1 c1 0
0 1 0
0 0 1



 ,




1 0 c1
0 1 0
0 0 1








c2 1 0
1 0 1
0 0 1



 =




c2 1 c1
1 0 0
0 0 1



 =




c2 1 0
1 0 1
0 0 1








1 0 0
0 1 c1
0 0 1



 ,




1 0 0
0 1 c1
0 0 1








c2 1 0
1 0 1
0 0 1



 =




c2 1 0
1 0 c1
0 0 1



 =




c2 1 0
1 0 1
0 0 1








1 0 c1
0 1 0
0 0 1








1 0 0
0 1 →c1c2
0 0 1



 .

The remaining relations are derived similarly.
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22.2.4 Deriving matrix multiplication from the interchange relations

Suppose that g1 and g2 are two expressions given in the normal form of Theorem 22.6. The goal is to
use the Relations B to rearrange and simplify the product g1g2.

Step 1. The h-past-x relations and h-past-y relations and the x-past-y relations allow us to move
all the row reducers yi(c) to the left, all the elementary matrices xij(c) to the right so that all the
diagonal generators hi(d) are in the middle.

Step 2. The hh-relations allow us to write the product of the diagonal generators in the form
h(d1, . . . , dn).

Step 3. The reflection relation and the building relation allow us to reduce the y-product to being a
y-product for a reduced word of a permutation. Then the theorem that the graph of reduced words is
conneted allows us to arrange this reduced word to be the greedy reduced word for w.

Step 4. The x-interchange relations allow us to put the xij(c) into its appropriate place in the matrix
presentation order.

In combination these moves rearrange the product g1g2 into normal form.
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