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16 The Modular group

By definition
SL2(Z) = ker(det), where det : GL2(Z) → Z→ = {±1}

so that there is an exact sequence

{1} → SL2(Z) → GL2(Z)
det↑→{±1} → {1}

and SL2(Z) is index 2 in GL2(Z) with

GL2(Z) = SL2(Z) ↓ SL2(Z)
(
1 0
0 ↑1

)
.

Then
Z(GL2(Z)) = Z(SL2(Z)) = {±1}

and PGL2(Z) and SL2(Z) are defined by

PGL2(Z) =
GL2(Z)

Z(GL2(Z))
and PSL2(Z) =

SL2(Z)
Z(SL2(Z))

and PSL2(Z) is index 2 in PGL2(Z) with

PGL2(Z) = PSL2(Z) ↓ PSL2(Z)
[
1 0
0 ↑1

]
.

Proposition 16.1. The following are equivalent presentations of GL2(Z).

(a) Generators:

(
a b
c d

)
with ad↑ bc ↔ Z→

,

Relations: (
a1 b1
c1 d1

)(
a2 b2
c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)

(b) Generators: ω1, ω2, e

Relations

ω21 ↔ Z(GL2(Z)), ω41 = 1, ω32 = ω21 , (b1)

e2 = 1, eω1e
↑1 = ω↑1

1 , eω2e
↑1 = ω1ω

↑1
2 ω↑1

1 . (b2)

(c) Generators: ε1,ε2, e

Relations:

ε1ε2ε1 = ε2ε1ε2, (ε1ε2ε1)
2 ↔ Z(GL2(Z)), (ε1ε2ε1)

4 = 1, (c1)

e2 = 1, eε1e
↑1 = ε↑1

1 , eε2e
↑1 = ε↑1

2 (c2)

(d) Generators: x12(1), x21(1), n1, e,

Relations:

x12(1)x21(↑1)x12(1) = n1, n2
1 ↔ Z(GL2(Z)), n4

1 = 1, (d1)

n1x12(1)n
↑1
1 = x21(↑1), n1x21(1)n

↑1
1 = x12(↑1), (d2)

e2 = 1, ex12(1)e
↑1 = x12(↑1), ex21(1)e

↑1 = x21(↑1), en1e
↑1 = n↑1

1 , (d3)

where we use the notation

x12(a) = x12(1)
a

and x21(a) = x21(1)
a, for a ↔ Z.
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Proof. Generators (b) in terms of generators (a), generators (c) and generators (d):

ω1 =

(
0 1
↑1 0

)
= ε1ε2ε1 = n1,

ω2 =

(
0 1
↑1 1

)
= ε1ε2 = x21(1)n1,

e =

(
1 0
0 ↑1

)
= e = e.

Generators (c) in terms of generators (a), generators (b) and generators (d):

ε1 =

(
1 1
0 1

)
= ω↑1

2 ω1 = x12(1),

ε2 =

(
1 0
↑1 1

)
= ω1ω

↑1
2 = x21(↑1),

e =

(
1 0
0 ↑1

)
= e = e. (16.1)

Generators (d) in terms of generators (a), generators (b) and generators (c):

x12(1) =

(
1 1
0 1

)
= ω↑1

2 ω1 = ε1, x21(1) =

(
1 0
1 1

)
= ω2ω

↑1
1 = ε↑1

2 ,

n1 =

(
0 1
↑1 0

)
= ω1 = ε1ε2ε1, e =

(
1 0
0 ↑1

)
= e = e.

Relations (c) from relations (b): The computations

ε1ε2ε1 = ω↑1
2 ω1ω1ω

↑1
2 ω↑1

2 ω1 = ω↑3
2 ω21ω1 = ω↑2

1 ω21ω1 = ω1,

ε2ε1ε2 = ω1ω
↑1
2 ω↑1

2 ω1ω1ω
↑1
2 = ω31ω

↑2
2 ω↑1

2 = ω31ω
↑3
2 = ω31ω

↑2
1 = ω1,

give
ε1ε2ε1 = ε2ε1ε2, (ε1ε2ε1)

2 = ω21 ↔ Z(GL2(Z)), (ε1ε2ε1)
4 = ω41 = 1,

e2 = e2 = 1, eε1e
↑1 = eω↑1

2 ω1e
↑1 = ω1ω2ω

↑1
1 ω↑1

1 = ω↑2
1 ω1ω2 = ω↑1

1 ω2 = ε↑1
1 ,

eε2e
↑1 = eω1ω

↑1
2 e↑1 = ω↑1

1 ω1ω2ω
↑1
1 = ω2ω

↑1
1 = ε↑1

2 .

Relations (b) from relations (c): Compute

ω21 = (ε1ε2ε1)
2 ↔ Z(GL2(Z)), ω41 = (ε1ε2ε1)

4 = 1,

ω32 = ε1ε2ε1ε2ε1ε2 = ε1ε2ε1ε1ε2ε1 = (ε1ε2ε1)
2 = ω21 ,

e2 = e2 = 1, eω1e
↑1 = eε1ε2ε1e

↑1 = ε↑1
1 ε↑1

2 ε↑1
1 = ω↑1

1 ,

and

eω2e
↑1 = eε1ε2e

↑1 = ε↑1
1 ε↑1

2 = ε2ε
↑1
2 ε↑1

1 ε↑1
2

= ε2ε
↑1
1 ε↑1

2 ε↑1
1 = ε2ε1ε2ε

↑1
2 ε↑1

1 (ε↑1
1 ε↑1

2 ε↑1
1 )

= (ε1ε2ε1)ε
↑1
2 ε↑1

1 (ε↑1
1 ε↑1

2 ε↑1
1 ) = ω1ω

↑1
2 ω↑1

1 .

Relations (b) from relations (d): Compute

ω21 = n2
1 ↔ Z(GL2(Z)), ω41 = n4

1 = 1, e2 = e2 = 1, eω1e
↑1 = en1e

↑1 = n↑1
1 ,
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ω32 = x21(1)n1x21(1)n1x21(1)n1 = n1x12(↑1)n1x12(↑1)n1x12(↑1)

= n2
1x21(1)n1x21(1)x12(↑1) = n3

1x12(↑1)x21(1)x12(↑1) = n3
1n

↑1
1 = n2

1 = ω21 ,

and
eω2e

↑1 = ex21(1)n1e
↑1 = x21(↑1)n↑1

1 = n1n
↑1
1 x21(↑1)n↑1

1 = ω1ω
↑1
2 ω↑1

1 .

Relations (d) from relations (b): Compute

x12(1)x21(↑1)x12(1) = ω↑1
2 ω1ω1ω

↑1
2 ω↑1

2 ω1 = ω21ω
↑3
2 ω1 = ω1 = n1,

n2
1 = ω21 ↔ Z(GL2(Z)), n4

1 = ω41 = 1, e2 = e2 = 1,

n1x12(1)n
↑1
1 = ω1ω

↑1
2 ω1ω

↑1
1 = ω1ω

↑1
2 = x21(1)

↑1 = x21(↑1),

n1x21(1)n
↑1
1 = ω1ω2ω

↑1
1 ω↑1

1 = ω↑2
1 ω1ω2 = ω↑1

1 ω2 = x12(1)
↑1 = x12(↑1),

ex21(1)e
↑1 = eω↑1

2 ω1e
↑1 = ω1ω2ω

↑1
1 ω↑1

1 = ω↑2
1 ω1ω2 = ω↑1

1 ω2 = x12(1)
↑1 = x12(↑1),

ex21(1)e
↑1 = eω2ω

↑1
1 e↑1 = ω1ω

↑1
2 ω↑1

1 ω1 = ω1ω
↑1
2 = x21(1)

↑1 = x21(↑1),

and
en1e

↑1 = eω1e
↑1 = ω↑1

1 = n↑1
1 .

Relations (d) from relations (a): Compute

x12(1)x21(↑1)x12(1) =

(
1 1
0 1

)(
1 0
↑1 1

)(
1 1
0 1

)
=

(
0 1
↑1 1

)(
1 1
0 1

)
=

(
0 1
↑1 0

)
= n1,

n2
1 =

(
0 1
↑1 0

)(
0 1
↑1 0

)
=

(
↑1 0
0 ↑1

)
↔ Z(GL2(Z)), e2 =

(
1 0
0 ↑1

)2

=

(
1 0
0 1

)
= 1,

n4
1 = (n2

1)
2 =

(
↑1 0
0 ↑1

)2

=

(
1 0
0 1

)
= 1,

n1x12(1)n
↑1
1 =

(
0 1
↑1 0

)(
1 1
0 1

)(
0 ↑1
1 0

)
=

(
0 1
↑1 ↑1

)(
0 ↑1
1 0

)
=

(
1 0
↑1 1

)
= x21(↑1),

n1x21(1)n
↑1
1 =

(
0 1
↑1 0

)(
1 0
1 1

)(
0 ↑1
1 0

)
=

(
1 1
↑1 0

)(
0 ↑1
1 0

)
=

(
1 ↑1
0 1

)
= x12(↑1),

ex12(1)e
↑1 =

(
1 0
0 ↑1

)(
1 1
0 1

)(
1 0
0 ↑1

)
=

(
1 1
0 ↑1

)(
1 0
0 ↑1

)
=

(
1 ↑1
0 1

)
= x12(↑1),

ex21(1)e
↑1 =

(
1 0
0 ↑1

)(
1 0
1 1

)(
1 0
0 ↑1

)
=

(
1 0
↑1 ↑1

)(
1 0
0 ↑1

)
=

(
1 0
↑1 1

)
= x21(↑1),

and

en1e
↑1 =

(
1 0
0 ↑1

)(
1 0
0 ↑1

)(
1 0
0 ↑1

)
=

(
0 1
1 0

)(
1 0
0 ↑1

)
=

(
0 ↑1
1 0

)
= n↑1

1 .
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Relations generators? (a) from relations generators? (b): Organize this according to the 3-valent tree
(see [Serre, 4.2(c) and Theorem 6]).

Mark one edge as the identity edge A, and other edges as Ag, so that

PSL2(Z) ↑→ {edges of tree}g ↗↑→ Ag is a bijection.

There are two parts of the graph, a left side and a ride side, separated by the vertex at i, with

(
1 0
0 1

)

on the right side of i and ω1 =

(
0 1
↑1 0

)
on the left side of i. The segment between eiω/3 and e↑iω/3

always has image with edges labeled by g and gω1 for some g ↔ PSL2(Z). If this edge is on the
right side of the graph then, together with its partner edge on the left side of the graph, these edges
represent the four elements

g =

(
a b
c d

)
, gω1 =

(
↑b a
↑d c

)
, ω1g =

(
c d
↑a ↑b

)
, ω1gω1 =

(
↑d c
b ↑a

)
.

In this way we can restrict attention to the right side of the graph and the “right side” of the double
edges. The steps from such an edge to the neighboring edges are

ω2ω1 =

(
0 1
↑1 1

)(
0 1
↑1 0

)
=

(
↑1 0
↑1 ↑1

)
=

[
1 0
1 1

]
= x21(1),

ω↑1
2 ω1 =

(
1 ↑1
1 0

)(
0 1
↑1 0

)
=

(
1 1
0 1

)
= x12(1),

as elements of PSL2(Z). So every element on the “right-right” portion of the graph should have a
unique expression as a word in the letters x12(1) and x21(1) (these two elements should form a free
monoid inside PSL2(Z)). Any product of x12(1) and x21(1) has all positive entries.

Assume

g =

(
a b
c d

)
with a, b, c, d ↔ Z↓0.
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Produce a geodesic (minimal length) path back to the identity as follows:

(
a b
c d

)(
1 0
↑1 1

)
=

(
a↑ b b
c↑ d d

)
, when a > b,

(
a b
c d

)(
1 ↑1
0 1

)
=

(
a b↑ a
c d↑ c

)
, when b ↘ a.

Let us think about when a > b and c < d (which could cause a negative entry). Then a ↘ b + 1 and
d ↘ c+ 1 gives

ad ↘ (b+ 1)(c+ 1) = bc+ b+ c+ 1, and since ad↑ bc = 1, then b = c = 0,

which also forces a = d = 1. Thus, if the starting point is not the identity and a > b, then c ↘ d and
the next matrix in the sequence also has positive entries. A similar argument handles the case b > a.
When b = a then a(d↑ c) = ad↑ ac = 1 forces d↑ c = 1 and a = 1.

Theorem 16.2.

(a) SL2(Z↓0 is the free monoid on two generators x12(1) =

(
1 1
0 1

)
and x21(1) =

(
1 0
1 1

)
.

(b) SL2(Z) is 8 copies of SL2(Z↓0):

SL2(Z) = SL2(Z↓0) ↓ SL2(Z↓0)ω1 ↓ ω1SL2(Z↓0) ↓ ω1SL2(Z↓0)ω1

↓ (↑1)SL2(Z↓0) ↓ (↑1)SL2(Z↓0)ω1 ↓ (↑1)ω1SL2(Z↓0) ↓ (↑1)ω1SL2(Z↓0)ω1,

where ω1 =

(
0 1
↑1 0

)
and (↑1) =

(
↑1 0
0 ↑1

)
.

(c) GL2(Z) is 2 copies of SL2(Z): GL2(Z) = SL2(Z) ↓
(
1 0
0 ↑1

)
SL2(Z).

16.1 GL2(Z)
The group GL2(Z) is

GL2(Z) =
{(

a b
c d

) ∣∣∣ a, b, c, d ↔ Z and ad↑ bc ↔ Z→
}
, where Z→ = {1,↑1}

is the group of invertible elements of Z. Define

ε1 =

(
1 1
0 1

)
,

ε2 =

(
1 0
↑1 1

)
,

ω1 =

(
0 1
↑1 0

)
,

ω2 =

(
0 1
↑1 1

)
,

e =

(
1 0
0 ↑1

)
,

s =

(
0 1
1 0

)
.

so that ω1 = ε1ε2ε1 and ω2 = ε1ε2 and s = eω1.

Proposition 16.3.

(a) The group GL2(Z) is presented by generators ε1,ε2 and s with relations

ε1ε2ε1 = ε2ε1ε2, (ε1ε2ε1)
2 ↔ Z(GL2(Z)), (ε1ε2ε1)

4 = 1,

s2 = 1, sε1 = ε↑1
2 s, sε2 = ε↑1

1 s.
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(b) The group GL2(Z) is presented by generators ω1, ω2 and e with relations

ω41 = 1, ω32 = ω21 , ω21 ↔ Z(GL2(Z)),

s2 = 1, sω1 = ω↑1
1 s, sω2 = ω↑1

2 s.

Remark 16.4. The braid group B3 on 3 strands is presented by generators ε1,ε2 with relation
ε1ε2ε1 = ε2ε1ε2. Then

Z(B3) = {(ε1ε2ε1)k | k ↔ Z}, and ε1 = PICTURE, ε2 = PICTURE,

in a familiar braid representation of B3. These pictures are a realization of the isomorphism between
B3 and the fundamental groups of the configuration space of 3 distinct points on a plane,

B3
≃= ϑ1

(C3 ↑ (H12 ⇐H13 ⇐H23)

S3

)
, where

H12 = {(a1, a1, a3) ↔ C3},
H13 = {(a1, a2, a1) ↔ C3},
H23 = {(a1, a2, a2) ↔ C3},

and the group S3 acts on C3 ↑ (H12 ⇐H13 ⇐H23) by permuting the coordinates.

Remark 16.5. The group SL2(Z) is the subgroup of GL2(Z) generated by ω1 and ω2. The group
SL2(Z) acts on the upper half plane

S1 = {z ↔ C | Im(z) ↔ R>0}, by

(
a b
c d

)
(z) =

az + b

cz + d
.

The stabilizer of the points i and eiω/3 are

Stab(i) =

〈(
0 1
↑1 0

)〉
= ⇒ω1⇑ ≃= Z/4Z, and Stab(eiω/3) =

〈(
0 1
↑1 1

)〉
= ⇒ω2⇑ ≃= Z/6Z,

and the infinite three valent tree is generated by the action of SL2(Z) on the arc of the unit circle
connecting i and eiω/3. The arc of the unit circle connecting i and eiω/3 (in fact every element of S1)
is stabilized by ↑1 ↔ SL2(Z).

(uHPpic)

(see [Serre, 4.2(c) and Theorem 6]).
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Remark 16.6. For a general commutative ring R there is an exact sequence

{1} → SLn(R) → GLn(R)
det↑→R→ → {1}, where R→ = {r ↔ R | r↑1 ↔ R},

and

GLn(R) =
⊔

r↔R→

SLn(R)hn(r), where hn(r) =





1
. . .

1
r




.

For a general commutative ring R

Z(GLn(R)) = R→ and Z(SLn(R)) = {r ↔ R | rn = 1}.

Remark 16.7. The subgroup SL2(Z) is generated by the sets

{(
a b
c d

) ∣∣ad↑ bc = 1

}
, {ω1, ω2}, {ε1,ε2}, and {x12(1), x21(1), n1}.

Remark 16.8. The group SL2(Z) acts on the upper half plane

S1 = {z ↔ C | Im(z) ↔ R>0}, by

(
a b
c d

)
(z) =

az + b

cz + d
.

The stabilizer of the points i and eiω/3 are

Stab(i) =

〈(
0 1
↑1 0

)〉
= ⇒ω1⇑ ≃= Z/4Z, and Stab(eiω/3) =

〈(
0 1
↑1 1

)〉
= ⇒ω2⇑ ≃= Z/6Z,

and the infinite three valent tree is generated by the action of SL2(Z) on the arc of the unit circle
connecting i and eiω/3. The arc of the unit circle connecting i and eiω/3 (in fact every element of S1)
is stabilized by ↑1 ↔ SL2(Z).
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The result that SL2(Z) is isomorphic to the amalgamated product of Z/4Z ⇓Z/2Z Z/6Z is now a
consequence of [Serre, Theorem 6] (see [Serre, 4.2(c)]).

THIS ACTION OF SL2(Z) on a 3-valent tree makes it very close to G = SL2(F3((t)))?????,
BECAUSE G IS THE AUTMORPHISM GROUP OF THE BUILDING G/I, WHERE I IS AN
IWAHORI SUBGROUP AND THE BUILDING IS A 3 regular graph? FIGURE THIS OUT.

The group SL2(Z) is important in number theory because it is the ϖ = 1 case of an abelian variety
Cε/! which is a generalization of S1, the upper half plane, and the automorphism group of the lattice
is Sp2(Z) ≃= SL2(Z).

Remark 16.9. The braid group on 3-strands A3 is presented by

generators ε1,ε2 with relations ε1ε2ε1 = ε2ε1ε2.

The center of A3 is cyclic generated by (ε1ε2ε1)2,

Z(A3) = ⇒(ε1ε2ε1)2⇑ ≃= Z and
A3

Z(A3)
≃= PSL2(Z).

DOES THIS MEAN THAT SL2(Z) and A3 ARE BOTH (di”erent) CENTRAL EXTENSIONS OF
PSL2(Z) (with di”erent cocycles? and di”erent kernels?) FIGURE THIS OUT.
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