18 The subspace lattice $\mathbb{G}(\mathbb{F}^n)$

18.1 The rank generating function of $\mathbb{G}(\mathbb{F}^n)$

Let $\mathbb F$ be a field. The subspace lattice of $\mathbb F^n$ is

 $\mathbb{G}(\mathbb{F}^n) = \{\mathbb{F}\text{-subspaces of } \mathbb{F}^n\}$ partially ordered by inclusion.

Then $\mathbb{G}(\mathbb{F}^n)$ is a ranked modular lattice

$$\mathbb{G}(\mathbb{F}^n) = \bigsqcup_{k=0}^n \mathbb{G}(\mathbb{F}^n)_k, \quad \text{where} \quad \mathbb{G}(\mathbb{F}^n)_k = \{\mathbb{F}\text{-subspaces } V \subseteq \mathbb{F}^n \text{ with } \dim(V) = k\}.$$

Theorem 18.1. Let \mathbb{F}_q be a finite field with q elements. For $r \in \mathbb{Z}_{>0}$ let

$$[r] = \frac{q^r - 1}{q - 1}, \qquad [r]! = [r][r - 1] \cdot [2][1], \qquad and \ let \qquad \begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]! \ [n - k]!}$$

for $k \in \{0, 1, ..., n\}$. Then

$$\operatorname{Card}(\mathbb{G}(\mathbb{F}_q^n)_k) = \begin{bmatrix} n\\ k \end{bmatrix}$$

and

$$\sum_{k=0}^{n} x^{k} q^{\frac{1}{2}k(k-1)} \begin{bmatrix} n \\ k \end{bmatrix} = (1+x)(1+xq)\cdots(1+xq^{n-1}) = (-x;q)_{n}$$

18.2 Automorphisms of $\mathbb{G}(\mathbb{F}^n)$

For a poset P, let Aut(P) denote the group of automorphism of P.

Proposition 18.2. Let \mathbb{F} be a field. As groups,

$$Aut(\mathbb{G}(\mathbb{F}^n)) \cong GL_n(\mathbb{F}), \quad where \ GL_n(\mathbb{F}) = \{g \in M_n(\mathbb{F}) \mid g^{-1} \text{ exists in } M_n(\mathbb{F})\}.$$

18.3 Projective space and cosets

Let \mathbb{F} be a field and define an equivalence relation on $\mathbb{F}^n - \{(0, \dots, 0)\}$ by

$$[a_1, \ldots, a_n] = [\lambda a_1, \ldots, \lambda a_n], \quad \text{if } a_1, \ldots, a_n \in \mathbb{F} \text{ and } \lambda \in \mathbb{F}^{\times}.$$

The projective space \mathbb{P}^{n-1} is

$$\mathbb{P}^{n-1} = \{ \text{equivalence classes} \}.$$

Let $\{e_1, \ldots, e_n\}$ be an \mathbb{F} -basis of \mathbb{F}^n and let

$$E = (0 = E_0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_n = \mathbb{F}^n), \quad \text{where} \quad E_k = \mathbb{F}\text{-span}\{e_1, \dots, e_k\},$$

for $k \in \{0, \ldots, n\}$. Let $B = \{b \in GL_n(\mathbb{F}) \mid b \text{ is upper triangular}\}$ and

$$P_{k} = \left\{ \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \in \operatorname{GL}_{n}(\mathbb{F}) \mid A \in M_{k \times k}(\mathbb{F}), B \in M_{k \times (n-k)}(\mathbb{F}), C \in M_{(n-k) \times n-k}(\mathbb{F}) \right\}$$

for $k \in \{1, ..., n\}$.

Proposition 18.3. Let

$$G = GL_n(\mathbb{F}^n) = \operatorname{Aut}(\mathbb{G}(\mathbb{F}^n)) \text{ acting on } \mathbb{G}(\mathbb{F}^n)$$

 $and \ let$

$$\mathcal{F}(\mathbb{G}(\mathbb{F}^n)) = \{ maximal \ chains \ in \ \mathbb{G}(\mathbb{F}^n) \}.$$

$$\operatorname{Stab}_G(E_k) = P_k \quad and \quad \operatorname{Stab}_G(E) = B.$$

(c)

$$\mathbb{G}(\mathbb{F}^n)_k \cong G/P_k$$
 and $\mathcal{F}(\mathbb{G}(\mathbb{F}^n)) \cong G/B$,

 $\mathbb{G}(\mathbb{F}^n)_1 \cong \mathbb{P}^{n-1}$ and $\mathbb{G}(\mathbb{F}^n)_{n-1} \cong \mathbb{P}^{n-1}$ and $\mathbb{G}(\mathbb{F}^n)_k \cong \mathbb{G}(\mathbb{F}^n)_{n-k}$.

18.4 Counting

Let \mathbb{F}_q be a finite field with q elements.

Proposition 18.4. Let

$$G = GL_n(\mathbb{F}^n) = \operatorname{Aut}(\mathbb{G}(\mathbb{F}^n))$$

and let B be the subgroup of upper triangular matrices in G. (a)

$$\operatorname{Card}(GL_n(\mathbb{F}_q^n)) = [n]! q^{\frac{1}{2}n(n-1)} (q-1)^n, \qquad \operatorname{Card}(B) = q^{\frac{1}{2}n(n-1)} (q-1)^n,$$

and

(b)

$$\operatorname{Card}(\mathcal{F}(\mathbb{G}(\mathbb{F}_q^n))) = [n]!.$$

$$\operatorname{Card}(\mathbb{P}^1) = 1 + q, \quad and \quad \operatorname{Card}(\mathbb{P}^{n-1}) = 1 + q + \dots + q^{n-1}.$$

18.5 The Hecke algebra

Let $\mathbb{C}[G/B]$ be the \mathbb{C} -vector space with basis indexed by the elements of $\mathcal{F}(\mathbb{G}(\mathbb{F}_q^n))$. The group $G = GL_n(\mathbb{F}_q)$ acts on $\mathbb{C}[G/B]$ by the \mathbb{C} -linear maps given by

$$g(0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_n) = (0 \subsetneq gV_1 \subsetneq \cdots \subsetneq gV_n), \quad \text{for } g \in GL_n(\mathbb{F}_q).$$

The following result produces linear operators T_1, \ldots, T_{n-1} that all commute with the acion of $GL_n(\mathbb{F}_q)$ on $\mathbb{C}[G/B]$.

Theorem 18.5. For $i \in \{1, ..., n-1\}$ define a \mathbb{C} -linear map $T_i: \mathbb{C}[G/B] \to \mathbb{C}[G/B]$ by

$$T_i(0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_n) = \sum_{V_{i-1} \subseteq W \subseteq V_{i+1}} (0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_{i-1} \subsetneq W \subsetneq V_{i+1} \subsetneq \cdots \subsetneq V_n)$$

Then

$$T_j^2 = (q-1)T_j + q,$$
 $T_iT_{i+1}T_i = T_{i+1}T_iT_{i+1},$ $T_jT_k = T_kT_j,$ $gT_j = T_jg$

for $i \in \{1, ..., n-2\}$ and $j, k \in \{1, ..., n-1\}$ with $k \notin \{j-1, j+1\}$ and $g \in GL_n(\mathbb{F}_q)$.

18.6 Exercises

- 1. (a) Carefully draw the Hasse diagram of $\mathbb{G}(\mathbb{F}_2^3)$.
 - (b) Explicitly verify the results of Theorem 18.1 in the case of $\mathbb{G}(\mathbb{F}_2^3)$.
 - (b) Carefully draw the picture of the Fano plane and explain how the Fano plane encodes the lattice G(F³₂).
 - (c) Write down all the elements of $GL_3(\mathbb{F}_2^3)$ and of its subgroup *B* of upper triangular elements. Explicitly verify the results of Proposition 18.4 for this case.
 - (d) Explicitly display action of each element of $GL_3(\mathbb{F}_2)$ on the maximal chains in $\mathbb{G}(\mathbb{F}_2^3)$.
 - (e) Explicitly compute the action of T_1 and T_2 from Theorem 18.5 on $\mathbb{C}[G/B]$ for the case $\mathbb{G}(\mathbb{F}_2^3)$).
- 2. Prove that $\mathbb{G}(\mathbb{F}^n)$ is a ranked modular lattice.
- 3. Provide a careful proof of Theorem 18.1.
- 4. Provide a careful proof of Proposition 18.2
- 5. Provide a careful proof of Proposition 18.3.
- 6. Provide a careful proof of Proposition 18.4.
- 7. Provide a careful proof of Theorem 18.5.

References

- [AAR] G. Andrews, R. Askey, R. Roy, Special functions, Encyclopedia Math. Appl. 71 Cambridge University Press 1999. xvi+664 pp. ISBN:0-521-62321-9 ISBN:0-521-78988-5 MR1688958
- [BS17] Bump, Daniel and Schilling, Anne, Crystal bases. Representations and combinatorics, World Scientific 2017. xii+279 pp. ISBN:978-981-4733-44-1 MR3642318.
- [HH08] D. Flath, T. Halverson, K. Herbig, The planar rook algebra and Pascal's triangle, Enseign. Math. (2) 55 (2009) 77 - 92, MR2541502, arXiv:0806.3960.
- [HR95] T. Halverson and A. Ram, Characters of algebras containing a Jones basic construction: the Temperley-Lieb, Okada, Brauer, and Birman-Wenzl algebras Adv. Math. 116 (1995) 263-321, MR1363766s
- [Mac] I.G. Macdonald, Symmetric functions and Hall polynomials, Second edition, Oxford Mathematical Monographs, Oxford University Press, New York, 1995. ISBN: 0-19-853489-2, MR1354144.
 [11.4] [11.8] [11.10]
- [Mac03] I.G. Macdonald, Affine Hecke Algebras and Orthogonal Polynomials, Cambridge Tracts in Mathematics 157 Cambridge University Press, Cambridge, 2003. MR1976581.
- [Nou23] M. Noumi, Macdonald polynomials Commuting family of q-difference operators and their joint eigenfunctions, Macdonald polynomials—commuting family of q-difference operators and their joint eigenfunctions. Springer Briefs in Mathematical Physics 50 Springer 2023 viii+132 pp. ISBN:978-981-99-4586-3 ISBN:978-981-99-4587-0 MR4647625

[St86] R.P. Stanley, Enumerative combinatorics,

Volume 1, Second edition Cambridge Stud. Adv. Math. 49 Cambridge University Press, Cambridge 2012 xiv+626 pp. ISBN:978-1-107-60262-5 MR2868112
Enumerative combinatorics. Vol. 2, Second edition Cambridge Stud. Adv. Math. 208 Cambridge University Press 2024, xvi+783 pp. ISBN:978-1-009-26249-1, ISBN:978-1-009-26248-4, MR4621625

[Weh90] K.H. Wehrhahn, Combinatorics. An Introduction, Undergraduate Lecture Notes in Mathematics 1 Carslaw publications 1990, 162 pp. ISBN 18753990038