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17 Posets and lattices

17.1 Two examples

(1) Let n → Z>0. The subset lattice of {1, . . . , n} is

S(n) = {subsets of {1, . . . , n}} partially ordered by inclusion.

(2) The Young lattice is

Y = {partitions} partially ordered by inclusion.

Then

S(n) =
n⊔

k=0

S(n)k, where S(n) = {subsets of {1, . . . , n} with cardinality k},

and

Y =
→⊔

n=0

Yn, where Yn = {partitions with n boxes}.

↑

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

↑

. .
. ...

. . .

The subset lattice S(3) The Young lattice Y
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17.2 Posets

Let S be a set. A relation on S is a subset of S ↓ S.

Write x ↔ y if (x, y) is in the relation ↔.

A partially ordered set, or poset, is a set P with a relation ↔ on P such that

(a) If x → P then x ↔ x,

(b) If x, y, z → P and x ↔ y and y ↔ z then x ↔ z, and

(c) If x, y → P and x ↔ y and y ↔ x then x = y.

The Hasse diagram of P is the graph with

Vertices: P and Directed edges: x ↗ y if x ↔ y.

A maximal chain in P is a sequence x1, . . . , xn → P with n → Z>0 such that

(a) x1 < x2 < · · · < xn,

(b) If i → {1, . . . , n↘ 1} then there does not exist y → P such that xi < y < xi+1,

(c) There does not exist y → P such that y < x1,

(d) There does not exist y → P such that xn < y.

17.3 Morphisms and automorphisms

A morphism of posets is a function f : P ↗ Q such that P and Q are posets and

if x, y → P and x ↔ y then f(x) ↔ f(y).

An isomorphism of posets is a morphism f : P ↗ Q such that

the inverse function f↑1 : Q ↗ P exists and f↑1 is a morphism of posets.

A automorphism of P is an isomorphism f : P ↗ P of posets.

17.4 Lattices

Let P be a poset and E ≃ P .

An upper bound of E in S is an element b → S such that if y → E then y ↔ b.

A lower bound of E in S is an element l → S such that if y → E then y ⇐ b.

The infimum, or greatest lower bound of E in P is an element ω → P such that

(a) If p → E then ω ↔ p,

(b) If m → P and m is a lower bound of E in S then m ↔ ω.

The supremum, or least upper bound of E in P is an element ε → P such that

(a) If p → E then p ⇐ ε,

(b) If ϑ → P and ϑ is an upper bound of E in S then ε ↔ ϑ .

A lattice is a poset P such that

if x, y → P then inf(x, y) and sup(x, y) exist in P .
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17.5 Modular lattices

Let P be a lattice. Use the notation

x ⇒ y = inf(x, y) and x ⇑ y = sup(x, y),

and the language is x ⇒ y is “x meet y” and x ⇑ y is “x join y”.

A modular lattice is a lattice P such that

if m,n, p → P and p ↔ m then m ⇑ (n ⇒ p) = (m ⇑ p) ⇒ n.

For the following results, if the term Z-algebra and A-module are unfamiliar, there is nothing lost
in replacing A by a field F, V by an F-vector space and A-submodules by F-subspaces.

Theorem 17.1. Let A be a Z-algebra and let V be an A-module. Let

G(V ) = {A-submodules of V } partially ordered by inclusion.

Then G(V ) is a modular lattice.

Proposition 17.2. Let A be a Z-algebra and let V be an A-module. Let M,N,P → G(V ).

(a) (infimums exist)

inf(M,N) = M ⇓N = {v → V | v → M and v → N}.

(b) (supremums exist)

sup(M,N) = M +N = {m+ n | m → M and n → N}.

(c) (modular law)

If P ≃ M then M + (N ⇓ P ) = (M+) ⇓ P.

(d) (modular property)

M +N

M
⇔=

N

M ⇓N
.
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17.6 Exercises

1. (a) Give an example of a morphism f : P ↗ Q of finite posets that is bijective and is not an
isomorphism of posets. Draw a picture of the Hasse diagrams of P and Q to illustrate.

(b) Let P be a poset and let Aut(P ) be the set of automorphims of P . Show that Aut(P ) with
product given by composition of functions is a group.

(c) Explicitly determine Aut(S(3)) and Aut(Y).

2. Carefully define the terms ‘relation’, ‘equivalence relation’ and ‘partition of a set’, and prove
that the data of an equivalence relation is the same as the data of a partition of a set. In other
words, define a map from equivalence relations on S to partitions of S and prove carefully that
your definition is actually a function (i.e. is ‘well defined’) and that the function is a bijection.

3. The definition of maximal chains as given requires every maximal chain to be finite. Make an
alternate/better careful defnition that does not require a maximal chain to be finite.

4. (a) Give an example of a poset P and a subset E of P such that sup(E) does not exist.

(b) Prove that if P is a poset and E is a subset of P and sup(E) exists then sup(E) is unique.

(c) Explain the connection between this question and the ‘universal property’ of a ‘universal
object’.

5. Let S be a poset and let E be a subset of S.

(a) Formulate careful definitions of minimal element of E, maximal element of E, smallest
element of E and largest element of E.

(b) Give an example where E has two maximal elements.

(c) Prove that if E has a largest element then it is unique.

(d) How do the maximal element and the largest element of E relate to sup(E)?

(e) Explain the relation between the terms maximal element and largest element and the terms
maximum, local maximum and global maximum and explain how they apply to the setting
of maxima and minima that one meets in a first year calculus class.

6. (Ranked posets) Let n → Z↓0. A ranked poset of rank n is a poset P such that there exists a
unique function rk: P ↗ {0, 1, . . . , n} such that

(RPa) If x is a minimal element of P then rk(x) = 0,

(RPb) If x, y → P and x < y and there does not exist z → P such that x < z < y then rk(y) =
rk(x) + 1.

Prove that a poset P is a ranked poset of rank n if and only if every maximal chain in P has
length n.

7. (Totally ordered sets) Let S be a set. A total order on S is a partial order ↔ such that

If x, y → S then x ↔ y or y ↔ x.

A totally ordered set is a set S with a total order ↔ on S.

A poset S is well ordered if S satisfies: every nonempty subset E of S has a smallest element.

Prove that if S is well ordered then S is totally ordered.
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8. (Totally ordered fields) An ordered field is a field F with a total order such that

(OFa) If a, b, c → F and a ↔ b then a+ c ↔ b+ c.

(OFb) If a, b → F and a ⇐ 0 and b ⇐ 0 then ab ⇐ 0.

(a) Carefully define the standard partial order on Z>0, Z↓0, Q and R.
(b) Prove that Z>0, Z↓0, Z, Q and R are totally ordered sets which satisfy the conditions (OFa)

and (OFb).

(c) Prove that if F is an ordered field then the following hold:

(1) If a → F and a > 0 then ↘a < 0.

(2) If a → F and a ↖= 0 then a2 = 0.

(3) 1 ⇐ 0.

(4) If a → F and a > 0 then a↑1 > 0.

(5) If a, b → F and a ⇐ 0 and b ⇐ 0 then a+ b ⇐ 0.

(6) If a, b → F and 0 < a < b then b↑1 < a↑1.

(7) If x, y → F with x ⇐ 0 and y ⇐ 0 then x ↔ y if and only if x2 < y2.

(d) Prove that there does not exist a total order on C such that (OFa) and (OFb) hold.

(e) Let p → Z>0 be prime and let F = Z/pZ. Prove that there does not exist a total order on
F such that (OFa) and (OFb) hold.

9. Let S be a poset and let E be a subset of S. The set E is bounded in S if E has both an upper
bound and a lower bound in S. Carefully define R and the standard partial order on R and
prove carefully that if E ≃ R and E is bounded then inf(E) and sup(E) exist in R.

10. Let S be a poset. The intervals in S are the sets

S[a,b] = {x → S | a ↔ x ↔ b}, S(a,b) = {x → S | a < x < b},
S[a,b) = {x → S | a ↔ x < b}, S(a,b] = {x → S | a < x ↔ b},
S(↑→,b] = {x → S | x ↔ b}, S[a,→) = {x → S | a ↔ x},
S(↑→,b) = {x → S | x < b}, S(a,→) = {x → S | a < x},

for a, b → S.

Let E be a subset of R. Carefully define what it means for E to be a connected subset of R and
then prove carefully that E is connected if and only if E is an interval in R.

11. (Dedekind cuts) Let S be a poset. A lower order ideal of S is a subset E of S such that

if y → E and x → S and x ↔ y then x → E.

Let R be the set of lower order ideals in Q. Show that R ⇔= R.

12. (ideals in Z) Let

G(Z) = {nZ | n → Z↓0}, partially ordered by inclusion.

(a) Let P = G(Z)↘ {Z}. Determine the maximal elements of P .

(b) Let k → Z>0. Determine G(Z)↓k. Draw pictures of the Hasse diagram of G(Z)↓k for
k → {5, 12, 48, 60, 100}.
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(c) Let a, b → Z↓0. Carefully define gcd(a, b) and lcm(a, b) and prove carefully that

sup(aZ, bZ) = gZ and inf(aZ, bZ) = mZ, where g = gcd(a, b) and m = lcm(a, b).

13. Give an example of a lattice that is not modular.

14. Give a careful proof of Theorem 18.2.

15. Give a careful proof of Proposition 18.1.
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