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1 Introduction

1.1 The background

I've been working as a researcher in advanced discrete mathematics for about 35 years (since 1988).
A few years ago I was shocked to discover that we have a course with the title Advanced Discrete
Mathematics here in the mathematics department of University of Melbourne. I had never mentally
registered it because I am officially in the Pure Mathematics section of the department and this course
is part of the Mathematical Physics section of the department.

The discovery of this course got me thinkng. Even though I’ve worked in this field for a long time
and know a few things about it, I have never taught such a course, ever, in my whole career. I thought
to myself: perhaps this is something that I would enjoy teaching and perhaps I could make a positive
contribution for our students — I think, actually, maybe, I would like to teach course this once before
I retire. So, I put my hand up, and listed it as a teaching preference for the following year’s teaching
allocations.

It didn’t happen right away, but in the natural progression of administrative cycles, the emperors
stirred up and reshuffled the ministry a bit, as they do, and I found myself assigned to teach this
course in 2025. So I thought I'd think about it more realistically. What, exactly, would I like to show
the students, in my one chance to teach this course? I've had a very stimulating research career in this
field, with constant amazement and awe while tending the beautiful structures that we study, and I
have one chance to show a few students our wondrous garden. How should I design the garden tour?

1.2 The plan

Not suprisingly, once I actually started thinking about it, I realised that I’d have to give assignments
and a final exam. For this I’d need to cook up some problems, for which I'd would enjoy “covering
the content” behind those problems in my in class lectures.

So, the reality is that I need to decide what problems I will solve for them in class. So I started
making some lists of problams, to get a feel, for myself, of what is “out there”.
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1.3 Possible assignments

Assignment 1: Write an introduction to Catalan numbers, including their definition, a closed,
formula (with proof), recursion relations (with proof), and a formula for their generating function
(with proof), and the fact that they count noncrossing matchings on an even number of vertices (with
proof). You will be marked 40% on the quality and readability of your mathematical writing, 30% on
your presentation, delivery and formatting, 20% on thoroughness and 5% on whether the answers are
correct.

Assignment 2: Write a careful exposition of the proof of the Coxeter presentation of the symmetric
group. Be sure to include definitions (of the symmetric group and the simple transpositions), state
the theorem carefully, and write a clear, complete, careful proof of the theorem. You will be marked
40% on the quality and readability of your mathematical writing, 30% on your presentation, delivery
and formatting, 20% on thoroughness and 5% on whether the answers are correct.

Assignment 3: Write up a careful check of the tables on pages 111 and 239-240 of Macdonald’s
book on symmetric functions. Make sure your exposition includes definitions of SSYTs, weight and
charge and careful, readable, and easily followable exposition of your checks. Then give an exposition
of the tables on pages 350-361, including their definitions, how they were computed, what can be
noticed from them, and the expectations they generate. You will be marked 40% on the quality and
readability of your mathematical writing, 30% on your presentation, delivery and formatting, 20% on
thoroughness and 5% on whether the answers are correct.

Assignment 4: Give a 30 min talk on one of the following topics. You will be marked 50% on
the preparation, clarity, organization, thoroughness and thoughtfulness of your handwritten notes for
the talk and 50% on your delivery, boardwork, clarity, coherence, organization, elegance, audience
engagement, audience learning, and audience inspiration from your live lecture.

1. Flag varieties

Schubert polynomials
Macdonald polynomials
R-matrices and vertex models
Free probability

The Bruhat order

Chevalley groups

Hecke algebras

© 0N oUW N

Reflection groups

,_.
e

g-t-Catalan

. g-t-Kostka

. Card shuffling

. Farahat-Higman

— = =
N

. Brauer algebras

—
t

. Partition algebras

—
D

. Kronecker products
. Plethysm
. Schur-Weyl duality

— =
oo
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19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

Symmetric group representations and Murphy elements
Affine crystals

Hall algebras

Hypergeometric functions

Matroids

Nilpotent orbits

Hall-Littlewood polynomials and spherical functions
Littlewood-Richardson coefficients

Jack polynomials

Moment graphs

Kazhdan-Lusztig polynomials

The inifinite symmetric group

The affine Weyl group

Poset Laplacians

Stanley-Reisner rings

Chromatic quasisymmetric symmetric functions
polytopes, zonotopes, h-vectors and f-vectors

Loop erased walks

Combinatorics of the free Lie algebra and the partition algebra

2 In preparation Exam problem list

1

Prove that

(z +y)F = i (i) T

r=0
. Prove that
(21 + -+ ) = Z fasa.
AEY,

. Prove that

n\y (n-—1 n n

k) k k—1)
. Let f) be the number of standard tableaux of shape A. Prove that

= fu

HCEX
A/ p=0
. Prove that if zy = yx then €Y = e%eY.
. Prove that
1
log(1+ 2) = Z (—1)k_1%zk and —log(1 — 2)

k€Z>0
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7. Prove that

(S )= (X o) Tl

k€Z>o k€Z~o i=1

8. Define Young’s lattice and prove that it is a lattice.

9. Let Y be Young’s lattice and let A € Y. Give a bijection from the set of paths from @ to A to
the set of standard tableaux of shape .

10. Let fy be the number of standard tableaux of shape A. Prove that

n!
" Tlyex(a(d) +1(0) + 1)

a where a(b) = #arm) (b) and [(b) = #arm,(b).

11. (Vadermonde determinant) Prove that

n—1 n—1 n—1
n— n— n—
ml ;L'Q DY mn
det : : = H (i — 25).
1 1 1

12. (t-Vandermonde) Prove that

Z Tzl = H (xj — tx;).

wWESH 1<i<j<n

13. (Wronski’s relations) Prove that

Z (—1)i6ihj = 0.

i+i—k
14. (g-t Wronski’s relations) Prove that

> (=Dt = 1)eig; = 0.

i+j=k

15. (a) Define the Koszul complex for C".
(

)
b) Show that the Koszul complex is a complex of GL,(C) modules.
(c¢) Prove that the Koszul complex is exact.

)

(d) Compute the Euler characteristic of the Koszul complex.

16. Prove that

m= 3 (M,

n(p)+pl=k

17. Prove that

=y (—1)’f=ﬂ<‘5‘>hﬂ.

n(p)+pl=k

7
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18. (Newton’s relations). Prove that
Pe—e1pr—1+ -+ (=1 epmipr + (—1)Fer = 0.

19. Prove that

€1 1
2e9 e1 1
pr = det : 1
(k—1eg—1 ex—o -+ e 1
key, €k—1 ---€2 €1

20. Show that q.(X,;0,t) = (—t)"le,, the elementary symmetric function.
21. Show that ¢.(X,;q,0) = ¢"~'h,, the complete symmetric function.
22. Show that ¢.(Xn;q,q) = ¢"'p,, the power sum symmetric function.

23. Show that if f(¢) is polynomial in ¢ with roots 71, ...,7, then

the coefficient of ¢" in f(t) is (—1)"er (Y1, .-, Tn)-

24. Show that if A is an n X n matrix with entries in C with eigenvalues 71, ..., 7, then the trace of
the action of A on the rth exterior power of the vector space C" is
tr(A,A"(C")) = er(v1,.-.,7n), so that
tr(A) =e1(v1,---,Yn), and det(A) = en(Y1y- -, Vn)-

25. Show that if A is an n X n matrix with entries in C with eigenvalues ~1,...,~, then the chatac-
teristic polynomial of A is

n

det(A —tid) = > (=1)"enr(y1,. -, W)t
r=0
26. Show that
4 = Z = t)Card{j | 4j<ij41} Card{j | ijzz‘jﬂ}xilxiQ ez
1<iy <--<ir<n
27. Show that
q’l‘ — Z qk_l(—t)r_kl'il . xikxik+1 e mir_

11 i< i >y 1 >0 >y

28. Show that

qr = Z(q - t)é()\)_lqr_z()\)mk(mla cee vl'n)'
A7

29. For an n x ¢ matrix a = (a;j) with entries from Zx> let

y4 n
rs(a) = (f1, .- Hn), _ g o g
cs(a) = ()\1, - ,)\g), where Hi = ;al] and >‘J = ;CLU,
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so that rs(a) and c¢s(a) are the sequences of row sums and column sums of a, respectively. Define

L
O (a) _ H H a” ya _ ycs(a) — H H(yj)&ij7 and

i=1j=1 j=1li=1
wt(a) = e Y H azrl) = g~ (¢ — t)f(a)*é(/\)’
a;;#0

where A = ¢s(a), £(a) is the number of nonzero entries in a, £(\) is the number of nonzero entries
in A, and |A| is the sum of the entries of \. For a sequence of nonnegative integers A = (A, ..., \¢)
define

Ax = gx1 QX "4,

For a sequence pu = (p1, ..., in) of nonnegative integers let

Ay ={a € Myxo(Zxo) | cs(a) = A, rs(a) = p}.

Show that
= Zaw\(q,t)mu , where aun(gq,t) = Z wt(a),
1 G‘EA'U)\
and the first sum is over partitions p such that |u| = |A|.
30. Show that
r—1
(t = 9)ar(Xnits) + (g = )t —5) | D ¢;(Xn; ¢, 1)ar—j(Xnit, 5)
j=1

+ (¢ = 1)ar(Xn; g, 1) = (¢ — 8)gr (X3 ¢, 5).

Use this identity to deduce that

r—1
QT(XTL; Q7t) + Z h] t qr— J(Xn; Qat) - hr(Xn)[r]q,t =0
7=1
r—1 '
@ (Xniq,t) + € (Xn)(=q) @r—j(Xn; ¢, t) | + (=1)"er(Xp)[r]gs = 0

7j=1

T

> (=[Gl (Xn)er—(Xn) = (g — £)gr(Xn; g, 1)
=0

and
TQT n; q: Zp] q - t])QT ](Xn; q, t) - pT(Xnﬂﬂq,t - 0

and the Newton identities

k

khk = szhkfz and kek = Z(_l)iilpiekf’iv
i— =1

31. Show that w(g,(Xn;q,t)) = ¢(Xn; —t, —q) and deduce that w(py) = (—=1)*"py.
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32. Prove that Z[z1,...,2,]%" = Z[eq, ..., en].

33. (a) Prove that Q[z1,...,z,]%" = Q[p1,...,pn).
(b) Prove that Z[zy,...,x,])%" # Zlp1,. .., pn).

34. Prove that Z[X]4* = a,Z[X]".

35. Prove that

Qp, A1,y ..., Qp . qaoaqala"'aqar
1 F 1z :hm( g, 2 >
reeT Bla"'aﬁr :| q—1 TJrld)T‘ |: q/jlv" . 7qBT 1

36. (¢-binomial theorem). Prove that

(@2 ¢)oo _ 3 (@ @)k 1

z
(#@)o  S2 (G0
37. (g-exponential function) Prove that
1 1 —1)kg(3)
: = Z : % and (2q)00 = Z 7( ?q 2",
(50 G (G0 wezey (GO

38. (exponential functions) Prove that F' = exp(z) and ¢ = exp,(z) satisfy

dF
Az F and ¢(qz) = ¢(2).
39. (power functions) Prove that
ol )= 5D angmlace] = (127
(25 @)oo

40. (Power functions) Prove that ¢ = 1¢gla; ¢, z] and F = 1 Fyla; 2] = (1 — 2) ¢ satisfy
dF

(1 —2¢%)p(qz) = (1 — 2)¢(z) and .

41. (Gamma functions). Let

Ly(r) = (gq;_q;;rll and I(r)=r!
Prove that
Fy(a+1) = [a]ly(a) and I'(a+1)=al(a)
Prove that )
I'(a) :/ ettt dt
0
Prove that



Advanced Discrete Math MAST90030 notes, Arun Ram January 23, 2025

42. (Beta functions) Let

M@M)L ey TR
SR r I PN
Show that
1 - y dt B 1 r_ .
Baw) = [0ty ad B = [ ) de

and that the last integral is equivalent to

= h =¢g" and b= qg" 5.
(@ 10¢™; @)oo (a59)00(@™10;q)o0’ wherea=a an 1

S am ") (030)00(65 @)oo

mGZZO

43. (Gauss Hypergeometric function) Show that

Fi(a,b,c;z) = O /1 71— ) — )T dt
R O CEDN
and ,
2@1(6% ba ¢34, Z) = Z wzr =777
rez>0 (q7 q)T(C7 Q)'I‘
Show that
("2 — ¢ Ne(@®2) = (—(¢* + ")z + ¢ + Dp(gz) + (2 — Dp(2) = 0.
and 2 ]
F F
z(z—1) 2T (c=(a+b—-1)z) E» abF =0
44. (Weyl character formula) Show that
axtp A)\+p(Q7 t)
S e — and P 5 t = -
g a1 Ap(g,1)

45. (Weyl denominator formula) Show that

a, = H(x] — ;) and Ay(q,t) = H(acj — tax;).

i<j 1<j
46. (Pieri rules) Show that
ersy =177 hrsy =777, Drsy =177, qrsx =177, grsy =177
and
e, P\ =777 hy Py =777, prPy =777, P\ =777, grP\ =777

47. (parabolic restriction) Show that

Sx(T1y. .y xn) :ZSH($17--~7$n—1)$fL and Py(z1,...,2p) :ZPH(xl,...,xn_l)fo
27 27

11
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48. (LR rules) Show that

=Y e wd BE-YAaOn,

A A

49. (Cauchy identities) Show that

[T +w) = D Pa@at)Pe(yitia),  [[][@i+v) = D Palwia,t)Pr(ytia),

i=1j=1 ACnm i=1j=1 ACnm
and .
(txiyi; q
11 H @ y] = ) WR@PE.= Y, P,
i=1j=1 Y5> 4 £(X)<min(m,n) £(A)<min(m,n)
Then set ¢ = t to deduce that
m n m n
T +ziw) =D sal@)sny TG +u) = D sa@)sre(w),
i=1j=1 A i=1j=1 ACnm™
and o
1
= sx(x)s
l_Ill_Illxiyj Z A(@)sa(y)
i=1j= A

50. (Nonsymmetric Cauchy identity) Show that

(T ooy [T A2E0) © S B 0B )

5 @iy Qeo /N G Ty ) SR

and the left hand side is related to the character of the space of polynomial functions on the
Iwahori subgroup.

51. (Jacobi-Trudi formulas) Prove the Jacobi-Trudi formulas

sy = det(hy,—;) and sx = det(ey ).

52. Prove that

hy = ZKAMSA, €y = ZKA',;/SA, Du = ZX?k (k)5 Qu = ZX?{,C(M)S,\
A A A A

12
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3 Lectures

3.1 Week 1
Lecture 1: Examples of lattices and Bratteli diagrams
Lecture 2: The binomial theorem and the exponential

Lecture 3: The symmetric group

3.1.1 Lecture 1: Examples of Lattices and Bratelli diagrams

The Young lattice

1. Define the Young lattice Y.

2. Let F(Ypy be the set of maximal chains from ) to A and let fy = Card(F(Yy . For A with
< 5 boxes compute f.

3. Draw the Hasse diagram of the first 5 levels of Y and label each vertex with f.

4. For k € {1,...5} compute

> ff  and > A

AeYg €Yy
5. Define standard Young tableau of shape A.

6. Let A € Y. Give a bijection between F(Y[g 5) and the set of standard tableaux of shape A.

The Bratelli diagram for the Brauer algebras

1. Define the Bratelli diagram for the Brauer algebras B.

2. Let F(By ) be the set of maximal chains from () to A and let by = Card(F(By y-
For A with < 5 boxes compute b).

3. Draw the Hasse diagram of the first 5 levels of B and label each vertex with b).

4. For k € {1,...5} compute

> b0 and > ba

AeBy, AEBy

The Bratelli diagram for the Temperley-Lieb algebras

1. Define the Bratelli diagram for the Temperley-Lieb algebras TL as a sublattice of Young’s lattice
Y.

2. Let F(TLjp ) be the set of maximal chains from @) to A and let fy = Card(F(TLjp y)))-
For A with < 5 boxes compute fy.

3. Draw the Hasse diagram of the first 5 levels of TIL and label each vertex with f).

13
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4. For k € {1,...5} compute

D and B

AETLy AETLy

The Pascal lattice

1. Define the Pascal lattice as a sublattice of the Young lattice P.

2. Let F(IPy 5 be the set of maximal chains from ) to A and let f) = Card(F(Py 5. For A with <4
boxes compute f).

3. Draw the Hasse diagram of the first 5 levels of P and label each vertex with f.

4. For k € {1,...5} compute

D and Y

AePy AEP

Standard tableaux

1. Define partition, box, £(A), |A], A € p and . Tllustrate these definitions with pictures.
2. Define arm, leg, hook length, and content of a box. Illustrate these definitions with pictures.
3. Define standard Young tableau. Illustrate this definition with illuminating pictorial examples.

4. Prove the following theorem.

Theorem 3.1. Let n € Z~q. Let A € Y,, and let fy be the number of standard tableauzx of shape A.
For a box b € X let hy(b) be the hook length at the box b. Then

n!
n! = f3 and fH==———.
)\gk A HbeA h(b)

Theorem 3.2.

Z 2 =n! Z b3 = (2n)! Z f3 = Catalan Z <k>2 = <2n>
AT ~onpl’ A ’ ) \n)

A€Yy, AEBy, A€TLy, AEPy

14
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3.1.2 Lecture 2: The binomial theorem and the exponential

Binomial coefficents

1. Define n! and (Z)

2. Calculate, by brute force, with full details suitable for a grade 8 student,
(@+9)? (@+y)?° (r+y' and (z+y)°.

3. Write a careful proof of the following theorem.
Theorem 3.3. Let n, k € Z>o with k < n.

(a) Let S be a set with cardinality n. Then
(Z) is the number of subsets of S with cardinality k.

(b) (}) is the coefficient of 2™ FyF in (x +y)™.

(¢) If ke {1,...,n— 1} then

-G+ (7) () o ()

(d) In Clz,y],

4. Give diagrams/pictures illustrating Theorem
5. Write a careful proof of the following proposition.

Proposition 3.4. For A € Y let f) be the number of standard tableauz of shape \. If n € Z~q
and k € {1,...,n} then

s 50 50-0)

Formal power series

1. Define C((z)), C[[z]] and C[z].
2. Carefully define flng'

3. Prove that C((x)) is the field of fractions of C[[z]] (don’t forget to prove that C[[z]] is an integral
domain, so that you can be sure that the field of fractions is actually well defined).

4. Determine (with careful proof) C((x))*, C[[z]]* and C[z]*.

5. Prove that

C((x) = {0} U (| ] =~Clla])).

LeZ

15
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d
6. Write a careful proof that if ¢ € Z then d—(x*e) = —fx "L
x

7. Write a careful proof that if p € C[[z]] then

1 odt
p=ag+ax+agx®+--- with ak:H<d—fL70).

8. Let D = 4. Let p € C[[z]] and let a € C. Write a careful proof that

e*Pp(z) = p(z + a),

The exponential

1. Define the exponential.
2. Write a careful proof of the following theorem.

Theorem 3.5.
(a) If zy = yx then exp(x + y) = exp(x) exp(y).
(5) - (exp()) = ex().

3. Write a careful proof of the following theorem.
Theorem 3.6.
(a) If p € Clla]] and p(z +y) = p(x)p(y) then

there exists a € C such that p(z) = exp(ax).

(4) Ifp & Clla]) and -(p) = p then

there exists co € C such that p(x) = coexp(x).

The binomial theorem

1. Define (a); and (a;q); and (a;q)oo-
2. Define ,11¢, and .11 F;.
3. Write a careful proof of the following theorem.

Theorem 3.7. Let o € C. Then

(1-2=Y ((;;?kzk == <_ko‘> (—2)% = 1 Fyla; 2]

k€Zso kEZ>

16
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3.1.3 Lecture 3: The Symmetric group S,
1. Carefully define the algebra of n x n matrices M, (C).

2. Define the matrix unit basis of M, (C).
3. Carefully define the general linear group GL,(C).

4. Define permutation, the symmetric group and describe different ways of representing a permu-
tation.

5. Carefully define group homomorphisms GL,,(C) X GL.,(C) = GLy 41, (C) and S;, X Sy, — Sptm
given by direct sum and product respectively. Check that these homomorphisms are well defined
and injective.

6. Carefully define transpositions and simple transpositions, and the favourite element v, of cycle
type p.

7. Carefully define Coxeter elements.
8. Write a careful proof of the following theorem.
Theorem 3.8. Let n € Z~g.

(a) The function

{partitions of n} — {conjugacy classes of Sy} is a bijection.

[ — [
(b) For p €Y, define z, = 1"2™2...mylmy!--- where m; is the number of parts of size i in p.
Then
n!
Card(fyl) = =
“w

17
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3.2

Week 2: Posets and maximal chains

Lecture 4: Posets, lattices and modular lattices
Lecture 5: Maximal chains in S(n)

Lecture 6: Maximal chains in G(Fy)

3.2.1 Lecture 4: Posets, lattices and modular lattices

1.

Carefully define the following terms: relation, poset, Hasse diagram, supremum, infimum, lattice
and modular lattice.

Give some favourite examples of posets and lattices.
Determine all posets with 3 elements and all posets with 4 elements.

Give three sensible precise definitions of ranked poset. Give examples to show that these are
inequivalent. Discuss (with proof) conditions under which these definitions become equivalent.

Carefully define maximal chains.

. Prove the following theorem.

Theorem 3.9. Let A be a ring and let V be an A-module. Let
G(V) = {A-submodules of V'} partially ordered by inclusion.

Then G(V') is a modular lattice.

Let A be a ring and let V be an A-module. Let M and N be A-submodules of V', Show that, in
G(V),
sup(M,N) =M + N and inf(M,N)=MnNN,

where M + N={m+n|me M,nec N}

3.2.2 Lecture 5: Maximal chains in G(Fy)

1.
2.
3.

Carefully define the lattice of Fg-subspaces of Fy.

Show that G(Fy) is a ranked lattice and compute Card(G(Fy)) and Card(G(Fy)y).
Determine the rank generating function for G(Fy).

Prove that Aut(G(Fy)) = GLn(F,).

Let G = GLy(F,). Define the standard flag E = (0 C Eq € --- C Ey,,) and expliciitly determine
the subgroups P, and B of G given by

Stabg(E)) = P and Stabg(E) = B.

. Give explicit bijections

G/P=G(F),  G/BEFGF), and G G(F)n k.

18
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7.

8.

Define P! and P*! and show that

Card(P') =1+¢ and CardP" V) =14¢+¢+-- +q¢" L.

Let C[G/B] be the C-vector space with basis indexed by the maximal chains in G(Fy). For
i€ {l,...,n— 1} define s;: C[G/B] — C[G/B] given by

TOCVIGC-CVa)= > OCVig - CViaCWeVin &S V)

o Vie1CWCVigy
Prove that if 4,5 € {1,...,n— 1} with j &€ {i —1,i4+ 1} and k € {1,...,n — 2} then
T =(q-1)Ti+q T =TT,  TiTi1Tk = Thr1TiTen
and if g € Aut(S,) and i € {1,...,n} then

gl; =T;g, as operators on CS,.

3.2.3 Lecture 6: Maximal chains in S(n)

HW questions Lecture 6

1.

Carefully define the lattice of subsets of {1,...,n}.

. Show that S(n) is a ranked lattice and compute Card(S(n) and Card(S(n)).
. Determine the rank generating function for S(n).
. Prove that Aut(S(n)) = S,.

. Give a bijection between F(S(n)) and S,.

Let CF(S(n)) be the C-vector space with basis indexed by the maximal chains in S(n). For
i€ {l,...,n—1} define s;: CS,, — CS,, given by

sOCVig--CVi)= > (BCVic-—CViaCWCVin& - V)

Vie1CW SV
Prove that if 4,5 € {1,...,n— 1} with j &€ {t —1,i+ 1} and k € {1,...,n — 2} then
322 =1, s;s5=sjs;, SkSk+1Sk = Sk+15kSk+1
and if g € Aut(S,,) and i € {1,...,n} then
gsi = sig, as operators on CS,,.

Prove that the symmetric group S, is presented by generators si, ..., s, and relations

2
si =1, s;s5 = s;si, SkSk+1Sk = Sk+1SkSk+1

fori,je{l,....n—1}withj ¢ {i —1,i+ 1} and k € {1,...,n —2}.
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3.3

Week 3: Fundamental symmetric functions

3.3.1 Lecture 7: The pheqg functions

1.
2.

© »® N o o

Define the Pochhammer symbols
Define g, ¢, h,, and e,

State the relation between the g, ¢ h, and e, and Macdonald polyomials, Hall-Littlewood
polynomials and Schur functions.

Define the extended functions g, and ¢, and explain why the extend functions are not really
extended.

Explain how ¢, ¢, h, and e, are specializations of g,.

Derive formulas for G, g, h, and e, in terms of sequences.
define monomial symmetric functions and give some examples
State the ¢g-binomial theorem

Find the expansions of §,, ¢, g» ¢, hy and e, in terms of monomial symmetric functions

3.3.2 Lecture 8: The power sum symmetric functions

1.

- W

Define the power sum symmetric functions

Derive the power sum expansion of the single Cauchy-Macdonald kernel

Fine the power sum expansions of §,, G-, gr, Gr, hyr and e,.

Derive the monomial and power sum expansion of the full Cauchy-Macdonald kernel

Find the monomial expansions of gy, ¢x, gx, qr, hy and ey in terms of matrices with specified
row and column sum

3.3.3 Lecture 9: Binomial theorems

1.

- W

Derive the binomial theorems for (1 + z)™ and (1 + 2)™",
Derive the finie g-binomial theorems

Derive the prinicipal specializations of g, ¢, h, and e,.
State and prove the infiinite g-binomial theorem

Establish the important specializations of the infinite g-binomial theorem

3.3.4 Lecture 9: Wronski identities, Jacobi-Trudi and Giambelli formulas

1.
2.
3.
4.

Newton identities
Wronski identitiies
BGG resolutions

Koszul complex
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3.4 Week 4: Crystals and Schur functions
3.4.1 Lecture 10: Crystals
1. Define the crystal B(O).

2. Define the direct sum B; @ Bs of crystals.

3. Define the tensor product B; ® By of crystals.
4. Explicitly compute B(0)®? and B(0)®3.

5. Define the crystal of words.

6. Define crystal, morphism of crystals, isomorphism of crystals and crystal graph.

3.4.2 Lecture 11: Words and SSYTs
1. Define partitions and SSYTs.

2. Defne B(\) for a partition A.
3. Prove the following theorem.

Theorem 3.10. There is a unique crystal structure on B(\) such that the arabic reading map

B,(\) — B(O)®* is a crystal morphism.

4. Explicitly describe the crystal structure on B(\).
5. Explicitly construct the crystals B(\) for [A\| € {1,2,3,4} and n € {2, 3}.
6. Show that char(B(k)) = hy.
7. Show that char(B((1%)) = e.
8. Carefully define B(\), and K, and prove that Ky = 1.
9. Carefully define the dominance order and prove that if Ky, # 0 then pu < A.
10. Define z* and prove that
char(B(\)) = Z Kzt
m
Carefully specify what set the sum is over.

11. Define the Schur function s).
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3.4.3 Lecture 12: The Weyl character formula

1. Carefully define symmetric functions and the character of a crystal.
2. Carefully define i-string.

3. Let B be a crystal. Fori € {1,...,n — 1} define s;: B — B by
si(b) = e,  where  h=é"b,&" b, ... eb,b, fb,..., f'b=t,

with ffb #£ 0, fib =0, b #£ 0 and é*+1b = 0.
Show that the operators s1,...,s,_1 define an S, action on B.

4. Let B be a crystal. Show that char(B) is a symmetric function.
5. Define sy and show that s) is a symmetric function.
6. Define p and ayy,.

7. Let B be a crystal and let Bt = {pe€ B |ifi € {1,...,n — 1} then &;p = 0}. Show that

a, - char(B) = Z At (p)+p-
peEBTt

8. Show that
A\+p

Qp

S\ —

3.5 Week 5: Symmetric functions, crystals and RSK
3.5.1 Lecture 13: The Littlewood-Richardson rule
1. Let B be a crystal and let BT = {pe B |ifi e {1,...,n— 1} then é;p = 0}. Show that

a, - char(B) = Z Ot (p)+p-
peBt

2. Define irreducible crystal.

3. Prove that if B is an irreducible crystal then there is a unique p € B such that ifi € {1,...,n—1}
then é;p = 0.

4. Prove that if B is an irreducible crystal and p € B such that if i € {1,...,n — 1} then &;p =0
then wt(p) is a partition.

5. Prove that if B is an irreducible crystal and p € B is such that if i € {1,...,n—1} then &;p =0
then B = B(\) where A = wt(p).

6. Let B; and B> be crystals. Prove that

char(B; ® By) = char(Bj)char(Bs).
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7. Let A, u be partitions and let n > £(\) + ¢(u). Show that
susy = »_ Card((B(u) ® B(v))})sx,

where
(B(p) @ B(v))y ={p€ B(u) ® B(v) | wt(p) = A and if i € {1,...,n — 1} then &p = 0}

8. Define skew shape and LR fillings.

9. Give a bijection

(B(1) @ B(v))y +— {LR fillings of shape A/u and weight v}

10. Prove the following theorem.
Theorem 3.11. Let cﬁ,j be the number of LR fillings of A\/u of weight v. Then

_ A
Susy = CvSA-

A
3.5.2 Lecture 14: The combinatorial R-matrix and RSK
1. Explicitly describe the crystal B(1%).

2. Give a crystal isomorphism B(0) ® B(1*) = B(1¥) @ B(O).

w

. Carefully define the RSK algorithm.
4. Use RSK to prove the following theorem.
5. Use RSK to prove the following theorem.

Theorem 3.12.
Seer || Shx S
AeYg
B® & |_| S} % Bu(N)

A€y,
L(AN)<n

Mixs(Zzo) < || Bu(d) x Bs(N)
£(A\)<min(s,t)

Myes({0,1}) | | Bi(N) x Bs(X9)
AC(s)

6. Carefully define the symbols in the following theorem and prove it.
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Theorem 3.13.

K=Y £

AeYy

(1 +---+:1:n)k = Z fasa.

AeYy

i

i=1j5=1

H H + xzyj Z SA(x)S)\C (y)

1-— xzy]

i=1j=1 AE(st)
HH (zi+y5) = Y sa(@)sn(y).
i=1j=1 AE(st)

3.5.3 Lecture 15: Pieri rules and Murnaghan-Nakayama rules
1. Define horizontal strip, vertical strip, border strip and broken border strip.
2. Use RSK to prove the following theorem.

Theorem 3.14.
48, = Z qr—ht(/\/u)(_75)ht(/\/u)5A

A/ bbstrip
ht(\
hys, = E Sx, erSy = g Sx, DrSy = E (-1) Mg,
A/p hstrip A/p vstrip A/ u bstrip

3. Carefully define K, ng (1), Xj\qk(u) and prove the following theorem.

A
Gu = xir, (1)
A
h# = ZKAHSA, ey = ZKA/},LISA’ Pu = ng‘k (H)S)\
A A A

Theorem 3.15.

3.6 Week 6: Catalan combinatorics
3.6.1 Lecture 16: ¢-t-Catalan and Dyck paths

1. Define the Shi arrangement, parking functions, dinv and area, and the ¢-t-RLT polynomial
2. Define Dyck paths, dominant Shi reagions, area, bounce and the ¢-t-Catalan polynomial

3. Prove that Cy,(1,1) = 7 (%17
4. Prove the recusion for Catalan Cy,,(1,1)

5. Determine the generating function for Cy/,,(1,1).
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3.6.2 Lecture 17: Ve, and diagonal coinvariants

1. Define the DAHA module Ly, (triv)

2. Define the parking module Parkg,y,

3. Define the Garsia-Haiman module GH/,
4. Define H*(Y; ' (79))

5. Prove that
Lgjy(triv) = Parkgy, = GHg), = H* (Yb_l('yd)).

6. Prove that
grdim(H* (Y, '(v9)) = Raym(q,1).
7. Prove that
grdim(H*(Yy (7)) = Caypm(a; ).

3.6.3 Lecture 18: Modified Macdonald polynomials and Garsia-Haiman modules

1. Define the modified Macdonald polynomial

2. Define the nabla operator

3. Prove that

Ven = greh(H* (Y, ("))

3.7 Week 7: GL,(F,) and G/B
3.7.1 Lecture 19: Generators and relations for GL,(F)

HW questions

1. Prove the following theorem

Theorem 3.16.
G= || BuwB

wESn

If w = s; -+, is a reduced word then

BwB = {yi(c1) -y, (c)B | c1, .., e}

2. Prove that
Card(BwB/B) =¢"™  and  Card(G/B)= »_ ¢'™.

wESn

3.7.2 Lecture 20: The Bruhat decomposition and the Poincaré polynomial
1. Define z;;(c), di(c), si, sij and y;(c).

2. State and prove a presentation theorem for GL,,(F).
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3.7.3 Lecture 21: Schubert varieties and Grassmannians
1. Simple transpositions and reduced words
2. reduced words for the longest element

3. Roots, Inversions and subwords
Theorem 3.17. The length gen function of W 1is

o1 — %)

Ha—=y-

3.8 Week 8: Moment graphs and Kazhdan-Lusztig polynomials
3.8.1 Lecture 22: Moment graphs and Hp(G/B)
3.8.2 Lecture 23: Sheaves on moment graphs
3.8.3 Lecture 24: Kazhdan-Lusztig polynomials
3.9 Week 9: Springer fibers
3.9.1 Lecture 25: Cells in Springer fibers
3.9.2 Lecture 26: Modified Hall-Littlewood polynomials
3.9.3 Lecture 27: AFL Grand Final Eve Holiday
3.10 Week 10: More Catalan combinatorics
3.10.1 Lecture 25: The Temperley-Lieb algebra
3.10.2 Lecture 26: The noncrossing partition lattice
1. tranpositions and the absolute order
2. The noncrossing partition lattice
3. Murphy elements

Theorem 3.18. The rank gen function of Cy g s

n

[T+ -1

i=1

1
Card(Cpy,q) = Catalan, #{mazimal chains in Cpy ¢} = Wh”n!.

3.10.3 Lecture 24: binary tree and rooted labeled trees
1. Determine the number of binary tress with n internal nodes
2. Determine the number of rooted labeled trees
3. Define the corresponding operads

4. Explain the Kontsevich integral
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3.11 Additional material

3.11.1 Lecture 10: special functions and differential equations

1.

2.

powers, exponential functions, gamma functions, beta integrals

hypergometric functions

3.11.2 Lecture 11: The ¢g-binomial theorem

1.

2.

The theorem as a specializatoin of a symmetric function identity

Jackson integrals

3.11.3 Lecture 12: g-hypergeometric functions

1.

2.

The difference equation

Selberg integrals

3.11.4 Lecture 18: Schubert polynomials

1.

2.

Definition of Schubert vareities

generalised cohomology

. The Borel presentation (i.e. the coinvariant ring)
. push-pulls, Schubert polynomials and Grothendieck polynomials

. Schubert classes for Grassmannians

Monk’s rule

3.11.5 Lecture 18: Reflection groups

1.

2.

Definitions, reflections, simple reflections, roots

Bruhat order

. C[l’c]
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4 Week 1: Partitions, binomial coefficients, symmetric group

4.1 Partitions and the Young lattice

Young’s lattice (boxes in a corner)
PICTURE

Brauer Bratteli diagram (add and remove)

PICTURE

Temperley-Lieb Bratteli diagram (restrict to two rows)

PICTURE

Pascal’s triangle (restrict to along the wall)
PICTURE

A partition is A = (A1,...,\¢) with £ € L>0, M,...,Apand Ay > -+ > Ap.
A boz is an element of Z2.
Identify A = (A1,...,\¢) with a set of boxes

A=Hr,c) €ZxZ|re{l,....¢} and ¢, € {1,..., A} },
so that A has A\, boxes in row r.
2), (1,3), (1,4), (1,5)
2

(1,1)
(2,1)
A= (53311) = TABLEAU = (3,1), (3,2), (3,3),
(4,1)
(5,1)

Let
N =¢ and A=A+ Ay,

if A= (A1,..., ). Write
A Cp o if X is a subset of u.
The conjugate of A is
X ={(e,r) | (r,e) € A}

For n € ZZO let
Y,, = {partitions X\ with [\| = n} and Y= |_| Yo.

nEZzO

Let A € Y,, and identify A with the set of boxes of A\. A standard tableau of shape X is a function
T: X — {1,...,n} such that

(a) If (r,c), (r,c+1) € X then T'(r,c) < T(r,c+1).
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(b) If (r,¢),(r+1,¢) € X then T'(r,c) < T(r +1,¢).
Let R R
S) = {standard tableaux of shape A} and fx = Card(S)).
If (r,c) € X define

arm(r,c) = A, — 1,

PICTURFE
leg(r,c) = A, —c.
Theorem 4.1. Letn € Z~g and A € Y,,. Then
n!
= and  nl= f3.
Tyox (axm(®) + leg() + 1 25

AEY,

4.2 The binomial theorem and the exponential
4.2.1 Binomial coefficients

For k € Z>q define
00=1 and kl'=k(k—-1)---3-2-1, fork € Zy.

For k € {0,1,...,n} define
n\ n!
k) T K-k

Theorem 4.2. Let n,k € Z>o with k < n.

(a) Let S be a set with cardinality n. Then
(Z) 1s the number of subsets of S with cardinality k.

(b) () is the coefficient of 2" Fy* in (z + y)™.
(c) If ke {l,...,n— 1} then

=G0+ ma (§)=1 e (7)=1

(d) In Clz,y],
(r+y)" = a (Z) $ky"_k
(0) 1
(o) (1) 11
) ) (5) = 12 1
(o) () (5) (3) 13 3
) (1) (5) (3) (2) 1 4 6 4

Corollary 4.3.

n n 2
o=} 0 26 -0
k=0 k

Proof. Flath see Halverson-Herbig arxiv:0806.3960 page 3.
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4.2.2 Formal power series
The ring of formal power series is
Cllz]] = {ao + a1z + aga®+--- | a; € C}
and its field of fractions is the ring of expressions,
C((x) = {a_pz ™ +a_ppz 4 a_pp02e 2+ ... | L€ Z,a; € C},
and the ring of polynomials is

Clz] = {ag + a1z + asz® + --- | a; € C and all but a finite number of the a; are 0}.

4.2.3 The exponential

The exponential is
exp(z) = " = 1+$+%$2+%x3+--- )

This is the most important expression in mathematics.
Theorem 4.4.
(a) If xy = yx then exp(x + y) = exp(x) exp(y).

d
(8) - exp(a) = expl(z).
Theorem 4.5.
(a) If p € C[[[z]] and p(z +y) = p(x)p(y) then

there exists a € C such that p(x) = exp(azx).

(b) If p € C[[z]] and g—g = p then

there exists co € C  such that p(x) = coexp(x).

4.2.4 The binomial theorem

Let
(@@ =01-a)(l-ag)---(1-ag"") and (g =ala+1)---(a+k-1).
pefne (a0: @)elar: @) - (ar: )
g, ats .- -, Ay ao; Q)k(a1; Ok - (ar; Ok g
r T 14,2 = z".
+1¢[ bl ] kezz: (4 Q)k(br; )+ (br; Qi
>0
and

g, 1y Q| (@0)k(@)k -~ (ar3 Ok
7"+1FT|: /817""67“ , :| B Z (Uk(ﬁl)k(ﬁr)k 7

kEZZO

If « € Z~¢ then

(a)k = W so that n!=(1), and <n) = (k)

when n, k € Z~ with k < n.
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Theorem 4.6. Let o € C. Then

k€Z> k€Z>o
Proof. (One option) Taylor series:
1 d* ala—1)---(a—(k—-1))
A a} -
Har T A

4.3 The symmetric group
Let n € Z~g. The vector space of n x n matrices

M,(C) has C-basis {Ej;; |i,j€1,...,n},

whee E;; is the matrix with 1 in the (4, j) entry and 0 elsewhere.

A permutation of n is w € Mpyx,(C) such that

(a) There is exactly one nonzero entry in each row and each column.

(b) The nonzero entries are 1.

The symmetric group is the set

Sn = {w € Mypxn(C) | wis a permutation of {1,...,n}}

with matrix multiplication. Identify a permutation w € M, x,(C) with a bijection w: {1,...

{1,...,n} by
w(i) =j if wj; =1,

where w;; is the (7, j)-entry of the matrix w. The transpositions, or reflections, in S, are
sij =1+ Ejj + Eji — Ey — Ejj, fori,j € {1,...,n} with i # j.
The simple transositions are
$1 = S12, 82 =523, ..., Sp—1= Sp—1n-

The general linear group is the set

GL,(C) = {A € M,(C) | there exists A=t € M,,(C) with AA~! =1and A7*A =1}

with matrix multiplication.
Proposition 4.7. The maps

GLp(C) x GLyn(C) —> GLpsm(C) Sp X Sm —  Spxm

(4,B) — (%‘%) and (v,w) (%)

are injective group homomorphisms.
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Let |gamma; = Eqp in S7 and
Ve = Eio+ FEoz + -+ Ep_1 1 + Ep1 in Sy,
for k € Z~1. For p1, ..., e € Z~g let
Voo =Y X XY, 0 Spuy XS, © Suytppy-

A Cozxeter element of S, is an element of the conjugacy class of 7, in S,,. For pi,...,us € Zsg let
n = py+ ...+ pe and let

[74] denote the conjugacy class of 7, in S,,.
A partition of nis A = (A1, ..., Ag) such that \y,...,; \p € Zsgand \; > -+ > Apand \j+---+ \p = n.
Theorem 4.8.

(a) The map

{partitions of n} — {conjugacy classes of Sy} is a bijection.
A — [
(b) If X is a partition of n and m; is the number of parts of size i (write A = (1"2™2...)) then

|
Card([y,]) = Z—);, where  zy = (1"12M2 ... )(my!ma! - - ).

Proof. For example, if w = (531624) then

PICTURE = PICTURE = 72

and if
YA =71 XY X 71 X Y1 X Y2 Xy X y2 X y3 X 74 X Y4
then
Card(Stab(yy)) =4!-1-1-1-1-3!-2.2.2.3.2!.4.4
=41.14.31.23.11.31.21. 42
so that

~ Card(S,)  n!
Card(fnl) = Card(Stab(yy)) 2’

5 Weeks 2: Posets and maximal chains

5.1 Posets and lattices

Two exaxmples:

(1) Let n € Z~¢. The subset lattice of {1,...,n} is

S(n) = {subsets of {1,...,n}} partially ordered by inclusion.
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(2) The Young latticeis
Y = {partitions} partially ordered by inclusion.

PICTURE PICTURE
The subset lattice S(3) The Young lattice Y
Then .
S(n) = |_| S(n), where S(n) = {subsets of {1,...,n} with cardinality k},
k=0
and

o0
Y= |_| Yo, where Y,, = {partitions with n boxes}.
n=0

5.1.1 Posets

Let S be a set. A relation on S is a subset of S x S.
Write x <y if (z,y) is in the relation <.

A partially ordered set, or poset, is a set P with a relation < on P such that

(a) If x € P then z < z,

(b) If z,y,z € P and x <y and y < z then x < z, and

(¢c) f z,y € Pand x <y and y < x then z = y.
The Hasse diagram of P is the graph with

Vertices: P and Directed edges: © — y if x < y.

A mazimal chain in P is a function

Z~og — P (a) if i € Z~q then z; < Tit1,
. such that .
i o (b) There does not exist y € P such that z; <y < z;41.

5.1.2 Lattices

Let P be a poset and E C P.
The infiumum, or greatest lower bound of E in P is an element ¢ € P such that

(a) If p € E then ¢ < p,

(b) If m € P and m satisfies the condition (if p € E then m < p) then m < /.
The supremum, or least upper bound of E in P is an element v € P such that
(a) If p € E then p >,
(b) If 7 € P and 7 satisfies the condition
ifpe Fthenp<r

then v < 7.
For k € Z~¢ and x1,...,xz; € P use the notation
inf(x1,...,z,) = inf({x1,...,2}) and sup(x1,...,x;) =sup({z1,...,Tx}).

A lattice is a poset P such that
if x,y € P then inf(z,y) and sup(zx,y) exist in P.
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5.1.3 Modular lattices
Let P be a lattice. Use the notation
x Ay =inf(x,y) and x Vy =sup(z,y),
and the language is z A y is “r meet y” and x V y is “z join y”.
A modular lattice is a lattice P such that
if mn,pe Pand p<m then mV (nAp)=(mVp)An.
Theorem 5.1. Let A be a Z-algebra and let V' be an A-module. Let

G(V) = {A-submodules of V'} partially ordered by inclusion.

Then G(V) is a modular lattice.

Proposition 5.2. Let A be a Z-algebra and let V' be an A-module. Let M,N,P € G(V).
(a) (infimums exist)

inf(M,N)=MNN={veV |veM andv e N}.
(b) (supremums exist)
sup(M,N) =M+ N ={m+n|me M andn € N}.
(c) (modular law)
IfPCM then M+ (NNP)=(M+)NnP.

(d) (modular property)
M+N _, N
M — MnNN’
Proposition 5.3. Let A =F, and let V' be an A-module so that V = Fy, where n = dim(V') as an
Fy-vector space. Then

G(F;) = |_| G(F7)k; where  G(FF}')r = {Fg-subspaces W of Ty with dim(W) = k}
k=0

and

5.2 Partially ordered sets
Let S be a set.

e A partial order on S is a relation < on S such that

(a) If x € A then x < z,
(b) If z,y,z € Sand x <y and y < z then z < z, and
(c) f z,y € Sand z <y and y <z then x = y.

e A total order on S is a partial order < such that
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(d) If z,y € Sthen z <yory < x.
e A partially ordered set, or poset, is a set S with a partial order < on S.

e A totally ordered set is a set S with a total order < on S.

{a, 8. r}

/1N

{e, 8} Adorl  {8.7)

X X]

{a) (81 {rt
@

The poset of subsets of {«, 3,7} with inclusion as <

Let S be a poset. Write
r<y if xz<yandax#y.

e The Hasse diagram of S is the graph with vertices S and directed edges given by

T =y if x <wy.

e A lower order ideal of S is a subset E of S such that

ifye Fandx € Sand x <y then x€F.

e The intervals in S are the sets

Sapy={re€Sla<z<by Sup={reS|a<z<b}
Sap={reSla<z<bl Suy={reS|la<z<b}
Scoop) ={z €S| 2<b} Sla,c) ={r €S |a<a}
S(,Ooyb)Z{JZES‘JZ<b} S(a,oo):{xeS\a<x}

for a,b € S.

5.2.1 Upper and lower bounds, sup and inf
Let S be a poset and let E be a subset of S.

e An upper bound of E¥ in S is an element b € S such that if y € E then y < b.
e A lower bound of E in S is an element | € S such that if y € F then [ < y.
e A greatest lower bound of E in S is an element inf(E) € S such that

(a) inf(F) is a lower bound of E in S, and
(b) If I € S is a lower bound of E in § then | < inf(FE).

o A least upper bound of E in S is an element sup(FE) € S such that
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(a) sup(F) is a upper bound of E in S, and
(b) If b € S is a upper bound of E in S then sup(E) < b.

e The set F is bounded in S if E has both an upper bound and a lower bound in S.

Proposition 5.4. Let S be a poset and let E be a subset of S. If sup(E) exists then sup(E) is unique.

5.3 The subspace lattice G(F")

The subspace lattice of F™ is
G(F"™) = {F-subspaces of F"} partially ordered by inclusion.

Then G(F™) is a ranked modular lattice
G(F") = |_| G(F")g, where G(F"); = {F-subspaces V C F” with dim(V) = k}.

Theorem 5.5. Let Fy be a finite field with q elements. For r € Z~q let

"] = ;o =0l -10-2[),  and let m - m

forke€{0,1,...,n}. Then

and

S ke [Z] = (Lt 2) (1 +2q) (12" = (~25
k=0

5.3.1 Automorphisms of G(F")

A morphism of posets is a function f: P — @ such that P and @ are posets and
ifz,y€ Pand x <y then f(z)< f(y).

An isomorphism of posets is a morphism f: P — @ such that the inverswe function f~': Q — P
exists and f~! is a morphism of posets.

A automorphism of P is an isomorphism f: P — P of posets.

Proposition 5.6. Let F be a field.
Aut(G(F")) = GL,(F),

where GL,(F) = {g € M,(F) | g~ ewists in M, (F)}.

HW:. Give an example of a morphism f: P — @ of finite posets that is bijective and is not an
isomorphism of posets.
PICTURE

36



Advanced Discrete Math MAST90030 notes, Arun Ram January 23, 2025

5.3.2 Projective space and cosets
Let F be a field and define an equivalence relation on F™ — {(0,...,0)} by
[a1,...,an] = [Aa1, ..., Aay], ifay,...,a, € Fand \ € F*.

The projective space P*~ ! is
P"! = {equivalence classes}.

Let {ei,...,e,} be an F-basis of F” and let
E=(0=FEyCEIC---CE,=F"), where Ej = FF-span{ey,...,ex},
for k € {0,...,n}. Let

B = and P, =7777

for k € {1,...,n}.
Proposition 5.7. Let G = GL,(F") = Aut(G(F")) acting on G(F").

(a)
Stabg(Ey) = Py and Stabg(E) = B.

(b)
G(F"), = G/P, and  F(G(F")) = G/B,

where F(G(F™)) = {mazimal chains in G(F)}.
(c)
G(F"); 2P ! and GF"),_1 ZP" ! and G(F") = G(F"), .

5.3.3 Counting and the Hecke algebra

Let F, be a finite field with ¢ elements.

Proposition 5.8.
(a)

Card(GL,(F})) = [n]'g2"" V(g —1)",  Card(B) = q2"" V(g —1)",, Card(F(G(F}))) = [n]".

(b)
Card(P)=1+¢q,  and CardP" ) =1+q+ - +¢""

Let C[G/B] be a vector space with basis indexed by the element of F(G(Fy)). The group G =
GL,(F,) acts on C[G/B] by the C-linear maps given by

g(Og‘/lggVn):(ogg‘/lgggVn)a fOl"gEGLn(Fq)-
Theorem 5.9. For I € {1,...,n— 1} define a C-linear map T;: C|G/B] — C[G/B] by

TOCVICCVa)= >  (0CWVCCViaCWeVipn G- C V)
ViceiCW Vi1

Then
TP =(q-VTj+q, TTinTi=TinTTiy,  TiTh=TT;,  ¢T;=Tyg

forjke{l,....n—1} andi e {1,....,.n -2} withk ¢ {j — 1,5+ 1} and g € GL,(F,).
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5.4 The subset lattice S(n)
The subset lattice S(n) is

S(n) = {subsets of {1,...,n}}, partially ordered by inclusion.

The subset lattice S(n) is a ranked modular lattice with
S(n) = | |S(n)k,  wtih S(n)), = {subsets V' C {1,...,n} with Card(V) = k}.

Then
Card(S(n);) = (’;) and Y o <Z> = (1+2)

is the rank generating function for S(n).

Proposition 5.10. The automorphism group of S(n) is the symmetric group
Aut(S(n)) = Sy.

Proposition 5.11. Fork € {1,...,n} let By, ={1,...,k}. Then E, € S(n) and (0 C E1 C --- C Ey)
is a maximal chain in S(n).

Stabsn(Ek) =SL X Sh—k and Stabg, = {1} =57 x---x 5.

S(n)y = % and  F(Sm)) = Sp/{1} = S,

5.4.1 Maximal chains in S(n)

Proposition 5.12. . The map

F(S(n)) — Sh
(wg‘/lggvn) — (VvlaVQ_Vvl,"'aVn_anl)

is a bijection.

Let CS,, be the vector space with basis indexed by the elements of F(S(n)). Fori € {1,...,n—1}
define a C-linear transformation s;: CS,, — CS,, by

sOCVIC - CV)= Y  (OCVNC - CViiCWCVin & C Vo)
ViciGWCVip
Then
s =1, 8iSi+15; = Si+15iSi+1, sisj = sjsi if j & {i—1,i+1},
and
$:9 = gsi, for g € Sy,
where

g CcWViC---CV,)=(0

N
Q

=
N

- CgVy) forge Sp,and (0 C Vi C - CV,) € F(S(n)).

=
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5.4.2 Simple reflections
Let S, be the symmetric group of permutation matrices and let
si=1+FEijv1+FEig1;— Eii — Eit1441, forie{1,...,n—1}.
Theorem 5.13. The symmetric group S, is presented by generators si,...,S,—1 and relations
832' =1, 8iSis+18i = Si4+15i8i+1, SjSk = SkSj,
forjke{l,....n—1} withk ¢ {j — 1,7+ 1} andi e {1,...,n—2}.
Proof. The proof requires four steps:

1) Generators A in terms of generators B.

3
4

(1)
(2) Generators B in terms of generators A.
(3) Relations A from relations B.

(4)

Relations B from relations A.

Here

Generators A: { permutation matrices}

Relations A: { matrix multiplication of permutation matrices}
Generators B: { simple transpositions}

Relations B: { the braid relations in the statement }

5.4.3 Reduced words

Let w € S,,. A reduced word for w is an expression w = s;, - - - s;, with 41,...,4p € {1,...,n — 1} and
¢ minimal. The length of w is ¢(w), the length of a reduced word for w.

Let w € S,. The following is an explicit algorithm for producing a reduced word for w.
Let j; > 1 be minimal such that w;; # 0. If j; does not exist set w) = w and if j; does exist set

1) _

w( = S1°"" sjl_lw.

Let jo > 2 be minimal such that wj(12) £ 0. If j, does not exist set w? = w) and if j» does exist set

w? =59 Sjrlw(l)-
Continue this process to produce w™W, ..., w™. Then w™ =1 and
w="---(sj_2-1---52)(s5,-1---s1) is a reduced word for w.

Proposition 5.14. Let
Inv(w) ={(¢,7) | i, € {1,...,n} withi < j and w(i) > w(j)}.

Then ¢(w) = Card(Inv(w)).
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Define a graph I'(w) with

Vertices: {reduced words of w}
FEdges: u— v if v = sy ---s;, is obtained from u = sj, - - - s, by applying
a relation s;8;415; = Si+18;Si+1 or a relation s;s; = s;js; with j & {i — 1,4+ 1}.

Theorem 5.15. Let w € S, The graph I'(w) of reduced words of w is connected.
Proof. Let

W= 8 -5 and W= 8j "84

be reduced words.

Case 1: i1 = j1. The two reduced words for w have the same first letter. By induction, the reduced
words v = s;, -+ 8;, and v = sj, - - - 55, are connected.

Case 2: i1 # j1. Since £(sj,,) < £(w) then there exists k such that s w = s, -~ 85, | SiSiy .y - Siy-
Case 2a: k # ¢. Then
" S

W = 85184y~ Sip_1 S5 Sipqq " Siy and

are all reduced words for w. Since the first factor is the same in the first two of these they are

connected. Since the last factor is the same in the last two of these they are connected. So, by
transitivity, the first is connected to the last.

Case 2b: k =/ and j; & {i1 — 1,41 + 1}. Then

= Sj1 S

= S518i1 " Sig_1s

= 8,85, -5, , and

g & & €

= Si1Sip " Siy

and the first two are connected since they have the same first letter, the middle two are connected by
the move s;, s;, = s, 5;, and the last two are connected since they have the same first letter.
Case 2c: k= { and j; € {i1 —1,71+}. Then

W = 841849 " 'Sig7
w = Silsjlsil e Sirfl%siqul e Sig_17
W = 851801851 * " Sir_1.557Sir 1 " " Sip_1) and

W = 851853 " Sjy>

and the first two are connected since they have the same first letter, the middle two are connected by
the move s;, 55,8, = sj,5;,5;, and the last two are connected since they have the same first letter. [
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6 Week 3: Generating symmetric functions

6.1 Generating function definitions

Define

(@q)p=(1—a)(l—ag)-(L—ad")  and  (45¢)e = (1—a)(1—aq)(l—-ag’) -

Define g, = g,(x;q,t), ¢ = qr(z;t), h, = hy(z), €, = e,(x) by the generating functions

5 (twiz; q) L1l —taz
o= e 2= Y o

T2
=1 ( ¢ 7Q)oo TEZEO =1 T‘EZ>O
n n
1 T
H - E h'I’Z ) H 1 +x;2 E €rz 7
L] -z ,
=1 TEZZO =1 T'GZZO

Remark 6.1. In later sections we will understand that the g, are, up to a normalization factor, the
Macdonald polynomials for a single row, the g, are Hall-Littlewood polynomials for a single row, and
the h, are Schur functions for a single row. In formulas

gr = E;’ Z))T Puy(z59,1), one row Macdonald polynomials,
14q)r
= (1 = 1t)Pyy(2;0,1), one row Hall-Littlewood polynomials,
hy = s(y(2), one row Schur functions, and
er = Pyry(759,1) one column Macdonald polynomials,
= Pury(730,1) one column Hall-Littlewood polynomials,
= 501y (7) one column Schur functions. [

- (txiz;q)oo Dl — taz
7 - 7 ~ r
and —_— = 2",
H (uxiz; q) oo Z gz H 1 —ux;z G
i=1 r€Z>o i=1 r€l>g
This is not really an extension since g,(x;q,t) = g-(z;q,t,1) and

g'f‘(xlv .o, Tnsy q, ta U) = urgT(uilxla cee 7u71w7’b; q, ta U) - urg’f<x; q, tu71)7

so that any formula for g, immediately converts to a formula for g, and vice versa. From the generating
function definitions,

Gr(xst,u) = gr(2;0,t,u), qr(x5t) = gp(2;0,¢, 1),
hy(x) = gr(x;0,0,1), er(x) = gr(x;0,—1,0). (6.1)

6.2 Formulas in terms of power sums

The power sums p, € Clz1,...,x,], for r € Z>q, are defined by

po=1 and pr=a]+ -4z, forreZsy.
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For a sequence of nonnegative integers A = (A1, ..., \¢) define

Px :p)\l p/\2 t 'p/\g'

Since
—1 1, 1 1
1 — = — _ 2 _ _ _72_73_“.:_ 1,
og(l —z2) /1_Zdz / (1+z+2°+---)dz G- 57— gE —z
r€Z>0
then
L (t72: @)oo °
log (H u:,;z ) (log(1 — tz;2q") — log(1 — ux;zq"))
o Wiz doa’ i =
n
1 1
= Z ( t?“.,ET’qf’l‘z'r‘ + urxrqgrzr)
=1 telaorelng
]. T o__ t’r’
= D W =) = Y (Z — )%/. (6.2)
Lel>0 TEL>0 r€Z>0 q
Define
2(A
(M) — o .
zA((J,t,u) :Z)\Hm, where 2z, = 1"™'m !12"™2my! - ..
i=1

for A= (A1,...,Ay) = (1™2™2...) Taking the exponential of both sides of (6.2) gives

n

(tziz;q)oo
Huxizq Z(Zqu,tup)‘ ))

=1 r€l>0 |A=r
so that o
A
B 1 uti — A P
v= 0 s = ) (H ﬁ)*- (6.3)
A 2 (gt u) S Vim FT @A
Applying (6.1)) gives
L) L)
s X _ iy PA = ) A
QT—Z<‘ (u ¢ )>Z)\7 QT—Z(' (1 t ))Z)\7
Al=r =1 A=r i=1
_ 1 _ r—e(0) PA
hr - Z ;P)\(ﬂf), €r = Z (_1) g
[Al=r [A|=r
6.3 Generalized Newton identities
Taking the coefficient of z" on each side of the identity
ﬁ (tziz; @)oo ﬁ (ui2; q)oo ﬁ £ @)oo
S (uxizi Qoo 11 (87323 @)s0 1-7 (57621 @)oc
gives
r—1
gr(@5q,t,u) + (Zﬁj(w; a4t u)Gr—j(7; g, u, 8)) + gr(w3q,u,8) = gr(w3q, 8, 5). (6.4)
j=1
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Using the specializations in (6.1),

r—1

Grlwstou) + (D0 4@t w)dr s (w3,9) ) + (w5, ) = (st ),
j=1
r—1

Gr(st,u) + | Y hy()wd G (st u) | = hp(z)(u” —t7) =0,
j=1
r—1 '

gr(x;t,u) + Zej(x)(—t)%jr_j(a:;t,u) + (=1)"ep(z)(u" —t") =0,
j=1

D (=) (W =) hj()e,—j(x) = (u— )G (x;t,w),

§=0

rgr(z;t,u) Zp] - tj)cjr_j(a?;t,u) —pr(z)(u" —t") =0,

Further specializations give the Wronski identities
> (~1)'eihj =0  and > (-1)i(tg —1)eig; =0
it+j=Fk i+j=Fk
and the Newton identities

k

khk = szhk—l and kek; = Z(_l)i_lp’iek‘—i'
i=1 i=1

6.4 Formulas in terms of sequences (i, ...,1,)

Using the geometric series expansions

1
— =14 ux;z+ u2x2z2 + -
1 —ux;z
gives
1—tx; —t)x;
ﬂ:1+w:1+(u_t)xiz(1+uxlz+u2x2z2+ )
1 —ux;z 1 —ux;z

Apply this, factor by factor, to the product
ﬁltmiz_(ltxlz) (172533”2)
Py 1 —wuziz  \1l—uxz 1 —ux,z

to get
Gr = Z (u — )1 Oy | 4 <ijiaky Card{y [ 4=lsadg, oo oo g,
1<i1 < <ir<n

e

Dividing ¢, by (u — t) and specializing t = u gives

1

(6.5)

(6.6)

(6.7)
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Applying (1 — uz;z)™' =1+ uz;z + u2x?22 + - - and expanding, factor by factor, the product

n

1 —tx;z 1 1
,1_[1 1—wur;z (1 —um1z> (1 — uxnz>( Tnz) - ( 712)

1=

gives

~ k—1 r—k
Gr = E uT (=) Ty e Ty (6.8)
11 i< S >y >0 >

Applying (6.1)) gives
ey = Z Tiy T, and h, = Z Tiy T, (6.9)
11 <t <-<ip 11<ig<-<ip
6.5 Formulas in terms of monomial symmetric functions

For A= (\1,...,\y) € Z™ with Ay > --- > X\, > 0, the monomial symmetric function is defined by

g x7, where 27 =z - 2"
YESRA

Applying the expansion (from the infinite g-binomial theorem, see below)

(t2:2% Qoo _ T GTI

o . (2ai]
@iz ) S (G:0)r
and expanding the product
ﬁ 122 @)oe _ (t2121¢)0 (L2021 @)oo
1 @zge (T127@)e (Tn2iq)e0
gives
t —1. t —1. o (t —1.
Z“ » ) WD here (™5 @) _ (b @) - (b5 0)p,
st an (@ @) (@ @Dy (@ D
if w= (p1,...,pe). Using the specializations in (6.1),
(t:q)
qr = Z u” ,u) U - t) fu )m/u gr = Z - umua qr = Z (1 - t)g(#)mu'
o (qa Q)M _
|pl=r |ul=r |lul=r
= Z My, €r = Mry, Pr = M.
|p|=r
6.6 The Cauchy-Macdonald kernel
For a sequence of nonnegative integers A = (A1, ..., \¢) define
9r = 9xi s O D =0n Do Dy hx = hy, hyg -+ hyy, EX =€) Exy N

Then
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6.7 Binomial theorems

Using
n n n
H(u +xziz) =u" H (1+z%) = Zu”_rzrer(x),
i=1 i=1 r=0
and
n n
H u " H Z w T rh )
i=1 (u— @2 i=1 (1 —zig reZ>o
and specializing 1 = 22 = - - - = x,, = 1 gives the binomial theorem,
-1
(u+2)" Zu"rr() and (u—2z) ZU"TT(H+T >
T€Z>0
where
n n! n+r—1 (n+r—1)!
<r>_7"!(n—7‘)!_€7‘(1,1,.."1) and ( - >—r'(n_1)'—hr(1,l,,1)
Letting x; = ¢*~! gives the g-binomial theorem,
n n
~ 1 -1
H(u + qz—lz Zq sr(r=1) |: :|un—7"zr and H —— = Z [n +r :|’LL_n_TzT7
i=1 i=1 (u—q12) r€Zs0 "
where
e (1 q q2 qnfl) _ ((L Q)n o _n:| and
r\+y Y DR - -
(@ Dr(a Dn—r |7
(L@ ") = LDt [ntr = 1].
(GO (G D1 | 7
A general infinite ¢-binomial theorem is
(tz;9) 00 lo—oI (1 tqi_lz> u—tgd 1ty I T) .
e () - 3 () - 3wl o
(uz; )00 i=1 1—ug™ 2z r€lso i=1 L= r€Zsg (5 9)r

A one sentence proof of the infinite ¢g-binomial theorem: Recognize that

(t2;0) o0
(u2; @)oo

(1—tz)

L(z;q,t,u) = m

satisfies the recursion L(z;q,t,u) = L(gz;q,t,u)

which provides a recursion on the coefficients of L(z; ¢, tu) = Z cr(q,t,u)z" as
TGZZO

er(g,t,u)q" —ter1(g,t,u)g" ' = er (gt u) — uer—1(g, t,u).

so that

—tq" o (tu=t; q)r

(0.t = a0 f Ly = o
9 T
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Specializing ¢t = 0 and v = 0 in (6.10]) give

1-g-a2---g" 1
L+ = (2= Y, —FE 0 o1 and
e, @
1

11«
i=1
i 1 o,
E I—¢12) (50w T;ZZO (@0

The finite ¢-binomial theorem is obtained from (6.10) by putting ¢ = ¢ and v = 1 so that the left

hand side becomes .
(¢"% @00 1 11 1
(239 (2,0 1—qgtz

i=1

and the right hand side is

(@"9)r - n. 1 (@@Dnerr 1 [nt+r—1
2 o), 2 Vi (s = [ }

reZso ¢r  (GDn-1 (GO)r

so that

ﬁl—;i—lz: 3 (FQ;Q)nw S [n‘H"—l] o

i VL U L
6.8 Monomial expansion of §,, ¢\, hy and e,
For a sequence of nonnegative integers A = (A1, ..., \y) define

IN = Gx Dre " GAps G = G Do Dgs hy=hx, hy,---hy,, €N = €\ €y """ CA,-

For an n x £ matrix a = (a;;) with entries from Z>q let

¢ n
rs(a) = (U1, .-, fin), B B
cs(a) = (A1, ..., o), where Hi = Zai_j and \; = Z:aij’

so that rs(a) and cs(a) are the sequences of row sums and column sums of a, respectively. Define
n /£ q)
= H H(l‘i)aij’ y — ycs(a) — H H az] Wtq ut H H uazJ ) 4/ Qg ’
i=1j=1 j=1i=1 j=1i=1 )“ZJ

where, by definition, (a;¢)p = 1. For a sequence pu = (u1,. .., iin) of nonnegative integers let

Ay ={a € Myxo(Zxo) | cs(a) = A, rs(a) = p}.

Then
g = Zau,\(q,t)mu , where  a,a(q,t Z Wtg.tu(a
12 aEAW\
and the first sum is over partitions u such that |u| = |A|.
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7 Week 4: Crystals and RSK

7.1 The category of crystals
Forie {1,...,n} let ¢, =(0,...,0,1,0,...,0) with 1 in the ith spot. Let
(1 o S /i . N
BO)=(1=2=---Sn) with  wt(i) = €;.

A crystal is an element B of the category generated by B(O) under direct sums and tensor products.
A crystal is a (finite) set B with functions

wt: B— 72" and fi: B—BU{0}, forie{l,...,n—1}

The crystal graph of B is the labeled graph with

Vertices: B and Labeled edges: b & fib.
A crystal morphism from Bi to Bs is a function ®: By — By such that
wt(®(b)) = wt(b)  and  fi(®(b)) = ®(fib),
forb€ By and i € {1,...,n — 1}. The character of a crystal B is

char(B) = g VP where a# =/t zhn
peEB

if w=(p1,...,pn) €Z". The direct sum of crystals By and B is
By ® By = B1 U By with wt and fz inherited from B; and Bs.
For i € {1,...,n — 1} define
&:B— BU{0} by &(fib)=0b if fib#0,

and é;b = 0 if there does not exist b € B such that b= f;b/. Let b € B and i € {1,...,n — 1}. Define
di (b) and d; (b) by

3y +
Oy 4 and SOy
Jzz.df(b)b #0 and J;id;(b)ﬂb _0
Then ) ) ) ~ ~ ~
; i 3 i .~ . =
O Ry oy gy BT oy

is the i-string of b.
The tensor product of crystals B; and Bs is

B1®B2:B1X32:{b1®b2‘blEBl,bQGBQ}

with
Wt(bl X b2) = Wt(bl) + Wt(bQ)
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and ] .
R R
Then
char(B;y @ Bs) = char(B;) + char(B3) and char(B; ® Bg) = char(Bj)char(Bs)
and

- eib1 @by, if df(by) > d. (by),
€i(b1 ®bg) = ‘ L 1 1(1)_ 2_(2)

b1 ® €;bo, if di (bl) < di (bg),
HW: Show that if By, Bs, B3 are crystals then

®: (Bi®B)®B3 — B ®(By® By)
b1 ® by ® b3 — b1 @ by ® b3

is a crystal isomorphism.

e A subcrystal of B is a subset of B closed under the operators & and f; (for i € {1,...,n —1}).

e A crystal is irreducible, or simple, if B has no subcrystals except # and B.
A highest weight element of a crystal B is b € B such that

ifie{l,...,n—1} then ¢&b=0.
Let
BT = {highest weight elements of B} and let BY ={be BT | wt(b) = A},
for A € Z".
Theorem 7.1.
(a) A crystal B is irreducible if and only if the crystal graph of B is connected.
(b) A crystal B is irreducible if and only if Card(B™) = 1.
Proposition 7.2. Assume By and Bs are irreducible crystals.
(a) If ®: By — By is a crystal morphism then ® is a crystal isomorphism, By = Bs.
(b) If Bf = {b]} and B = {b3} then
B1 2 By if and only if wt(b]) = wt(by).
Theorem 7.3. Two crystals By and By are isomorphic if and only if
char(B) = char(Ba).

Proof. Decompose B; and Bj into connected components. Let B(A) be the irreducible crystal of
highest weight A,
B\t = {vl} and wt (b)) = A
Then
By = | | B(wt(p)) = B,.
peB;t
So
char(By) = ) _ char(B(wt(p))) = char(By).
peB;
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7.2 The crystal of words B®*

Knuth Equivalence.
(a) If x <y < zthen zz-y — 2z - zy,
(b) Ifz <y <zthenyz -z —y-xz.

We need a story for this: z doesn’t want to be near y?? Check also Fulton’s Young tableaux book.

7.3 The Weyl character formula
For i € {1,...,n — 1} define s;: C[xy,...,z,] = Clz1,...,zy,] by
(sif) (@1, ymn) = f(T1, oy i1, Ty T 1, Tig 2y e -+, L)
A symmetric function is an element of
Clzy,..., 20" = {f € Clzy,...,x,] | if w € S, then wf = f}.
Let B be a crystal. Let b€ B and i € {1,...,n— 1}. The i-stirng of b is

. N +
(75O fibbeb, . e Dby = i),

Let s;p be the element of S;(b) such that
Wt(Sib) = Sth(b).
Then s;(s;(p)) = p and

sichar(B) = Zwsi“’t(b) = me(sib) = char(B).

beB beB

So char(B) is a symmetric function.
MORE HERE MORE HERE

Corollary 7.4. Let \ be a partition. Then

char(B(X)) = s.
7.4 The crystals B(\)
7.5 HW for Crystals and RSK

1. Use RSK to prove the three Cauchy identities for Schur functions.

2. Use RSK to prove the Pieri rules:
€rsx, hrs)\a qrSx, PrSx-

3. Use RSK to prove the Murnaghan-Nakayama rules for symmetric group and Hecke algebra
characters,

Pu = Z ng (N)S)\ and qu = Z X%Ik (M)S)\'
€Yy AEYL
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4. Use RSK to prove
n':Zf)%, (l’l‘i““xn)k: Zf)\s)\v nk: Zf)\d)\'
A

€Yy AEY

5. Use RSK to prove that
Z fr = #{involutions in S}.

AEY)

6. Prove that if w € Sy and RSK (w) = (P, Q) then RSK (w™!) = (Q, P).

8 Week 5: Products of symmetric functions

8.1 Tensor products and restrictions

Theorem 8.1.
_ _ J
Susy = E Sutwt(q) and Sy = g Swt(p)-
q€B(v) PEB(N)
pf{@qQC—p PEC =Py

8.2 The combinatorial R-matrix and RSK
Let

fr = Card(S)) = #{standard tableaux of shape A},
dy = Card(B(\)) = #{SSYTs of shape A filled from {1,...,n}},

sx(z) = sa(z1, ..., 1), and sx(y) = sa(y1y- -, ys)
Theorem 8.2.

n! = Z fi? nt = Z Iady, (x1++x")k - Z Fasx.

AEY AEY, AEY
s t 1 s t 1
MII— - ¥ @ Il = 3 s
j=1i=1 iYi £(A)<min(s,t) j=li=1 Wi AC(st)
For each of these there are three nice proofs:
(a) by RSK insertion,
(b) by crystals,
(c¢) by double centralizer algebras.
The corresponding cateogrifications are
n! — Sh, — Cs,
(14 +z,)F +——  BOSF s  LO)%k
I Mi(Zs0) > S(Vi@ Vi)
1 — ziy; N

[TA+azy;) = Mis({0,1}) «— AV, 0 V)
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8.3 Pieri rules

Let n € Z~¢ and let A, i be partitions of n. Define

Xaalw) = Y rwty,(Q),

QeS)H
where
S} = {standard tableaux of shape A}
I‘th’t(Q) - H f#(]’Q)7 with J(lu) = {/Llau+1ﬂ2a"'7ﬂl+"'ﬂg}
5250
and
(—¢, ifj+1isswofjinQ,
0, ifj+1¢J(p) and
fu(dia) = j+1lisneofjinQ and
j+2isswof j+1in Q,
L 4 otherwise.
Define

X, (1) = xg1(p)  and 3, (1) = X711 ()-

These are the characters of the Hecke algebra and the characters of the symmetric group, respectively.
Define

(jr - %(9517 ey Tns g, t) = Z qr_l(_t)k_rxil T l‘ik.
0 <o 4 > > >
and let
- - I .
h’l’:(JT(xl)-"al‘n;]-vo)) GTZQT($17-~7$n§Oa_1)a pr: (ﬂ(}r‘(xlw")xn;Qat)):L .
- =q
Theorem 8.3. Let p be a partition. Then
hys, = Z N (sum over horizontal strips A/ of length r)
A/p hs length r
erSy = Z Sx (sum over vertical strips N/ of length r)
A/ vs length r
DSy = Z (—1)ht()‘/“)s,\ (sum over border strips A/ of length r)
A/p bs length r
s Bt p) () Acols(N/ ) —E(u) sum over broken border
IrSu Z (=) q A < strips A/ u of length r

A/p bbs length r

For \,u €Y, let
Ky, = Card(B(\),)

so that K, is the number of SSYT of shape A and weight p. For a partition X let " be the conjugate
parittion to .
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Corollary 8.4. . Let u be a partition of n. Then

= Y e 6= X K o= X e
A€Y, AEY AEY S,

and
Gu(g, 1) = > X, (W)
AEY,
Proof of the Theorem.
Proof. Let P € B(u) and insert, by RSK column insertion,

P%l‘il%...exik, where ilS"'Sir>ir+1>"‘>ik.

Examples: For n € {1,2,3,4}

(X}, (1) = MATRIX  and  (Kj,) = MATRIX.

9 Week 6: Catalan algebraic combinatorics

1. (Generating function for Catalan) Show that if

1—-+v1—4x

G(z) = Z Cpx" then G(z) = 5

TLEZZO

2. (binomial formula for Catalan). Show that

3. (recursion for Catalan). Show that Cp =1 and
n
Cn1 = Z CiCr—;.
=0

Sketch:

LG -D= Y G = Y (Y G0 )" = 6w

neZ>q n€lgeo  i=0
Solve for G(x) and use the binomial theorem to expand. The coefficient of 2™ comes out to
ot ()-
4. (dimension of TL) Show that
Ln/2]

Cp = Z f(znfk,k)'
k=0

5. (Chebyshev polynomials?)
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6. Find a bijection between NC(S,,) and noncrossing matchings of {1,...,2n}. Describe the re-
sulting partial order on noncrossing matchings.

7. Let Gy, be the lattice of subsets of {1,...,n}, let G4(n) be the lattice of IF, subspaces of Iy, and
let NC(n) be the lattice of noncrossing partitions. Show that the number of maximal chains is

#A(Gr) =nl,  #A(Gy(n)) =[n]l,  #ANC(n) = (n+1)"""
8. (dimension of Brauer) Show that

1-3-5---(2k=1)= > B
AEYUYr _1U---

The lattice of noncrossing partitions of W is the interval of W (as a poset in the order determined
by translation factoizations) given by

NC(W) =W g, where ¢ is a Coxeter element of W.

The cluster complex is
T(W) =777.

The algebraic parking space is the Gordon module for the rational Cherednik algebra given by

Park%‘l,g(m) =sgn® L, 1 (triv).

1
h
The genus-g Hurwitz number is

Hy(\) = #{transitive factorizations of ~, into reflections},

where -, is a permutation of cycle type A and transitive means that the group generated by the factors
acts transitively on {1,...,n}. THIS DEFINITION IS MISSING THE g ON THE RIGHT HAND
SIDE.

Theorem 9.1. The number of mazimal chains in NC(W) is

Lh"n!.

W

10 Week 7: G/B for GL,(F,)

10.1 Generators and relations for GL,(F,)

Let Ej; be the n x n matrix with 1 in the (4, j)-entry and 0 elsewhere. For i,j € {1,...,n} and c € F
and d € F*, define
z5(c) = 1+ cEjj, and hi(d) =1+ (d —1)Ey;.

Forie {1,...,n— 1} and c € F, define
yi(c) =14+ (c=1)Ey — Eij141 + Eiit1 + Eig.
Identify each permutation w: {1,...,n} — {1,...,n} with the matrix

w=Ey 1)+ E2we) + -+ Enwm)-
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Also use the notations
h(dl,...,dn) = hl(dl)hn(dn), S;i :yl(O) and Sij = 1-FE; _Ejj+Eij+Eji-
The z-interchange relations are

wij(q)wz‘j(cz) = Irz'j(c1 + c2),
zij(c1)xik(c2) = zi(ca)zij(cr), zig(c1)zk(c2) = xzjp(c2)zir(cr),

zij(c1)zjk(ce) = zjk(ca)wij(cr)zi(cica), zik(c1)wij(c2) = wij(c2)zjp(c1)zin(—c1ca),
where we assume that ¢ < j < k. The hh-relations are
hi(d)hj(e) = h;(e)h;(d) and h(di,...,dn)h(e1,...,en) = h(dier, ..., dney).
The h-past-x relation is
h(dy, ..., dn)ai(c) = zij(cdid; h(dy, .. . dy). (GLhpastx)
The w-past-h and w-past-x relations are
whi(c) = hy) (c)w, wh(dy, ..., dn) = h(dy)s - - - dupn))w w5 () = Ty(iyw(j)(C)w.

The reflection relations and the building relations are the relations for rearranging ys. The reflection
relation is

1 -1 1\ -
; hi(c2)hit1(— i , if 0,
yi(c1)yi(e2) = viler + & Jhilea)hia (76 Jeiin(ey) 1 7 (GLref)
Tji+1 (Cl), if Cy = 0.
The building relation is
yi(c1)yit1(c2)yi(es) = yir1(c3)yi(cres + c2)yivi(cr)- (GLbldg)
The h-past-y relation is (letting h(dy,...,d,) = hi1(d1) - - hn(dy))
h(dl, e dn)yl(c) = yl(cdld;_ll)h(dl, e ,difl, di+1, di, di+2, e ,dn) (Gthasty)
The z-past-y relations are
zii1(c1)yi(c2) = yiler + c2)ii41(0),
zig(c1)yr(c2) = yr(c2)zin(crc2)xi pr1(c1), T g1 (c1)yr(c2) = yr(c2)zin(cr), (GLxpasty)

zij(c1)yi(e2) = yi(ca)wir(c), wiy1,5(c1)yi(c2) = yi(ca)wij(c1)wiv1j(—cic2),

where i < kand i+ 1 < j.

10.1.1 The normal form algorithm

Let
N = in(n—1).

Let (i1,...,ix) be the sequence

(ir,...,in)=(1, 2,1, 3,2,1, ..., n—1,n—2,...,2,1)
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Let (f1,...,8n) be the sequence

€1 — €92, €1 —E3, ..., €1 — &En-1, €1 — En,
€2 —€3, ..., €2 —Enp—1, €2 — En,

(B1,---,BN) =

En—2 —&n—1, En—2 — En,
En—1 —&n

For ce Fyand i € {1,...,n — 1} define

wo=(75)  ma we= (5 7)

Fora € Fyand i,j € {1,...,n} with i < j define

Te;—¢; (a) = iUz'j(a) = <(1) 61L>
Theorem 10.1. Let g € GL,(F). The normal form algorithm determines
c1,-..,cny € FU{oo} and ai,...,ay € F and di,...,d, € F*
such that

9=y (c1) - yiy(en)ha(dr) -~ hn(dp)xp (a1) - - 25y (an).

10.2 The Bruhat decomposition

The flag variety is
G/B={gB|geGL,(F,)}.

The Bruhat decomposition is the double coset decomposition

G/B= | | BuB.
weW

10.3 The Bruhat order

Define
yi(c) =777 and yi(o0) = 1.

The Schubert variety for w is
BwB = {y;,(c1) -~ yi,(ce)B | c1,...,c0 € FgU{o0}}
The Bruhat order is the partial order on S, defined by

BwB = |_| BuB.

v<w

The partial flag variety is
G/P ={gP | g€ GL,(F,)}.
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Then
G/P= || BuwP.
weWw P

For w € WP, the Schubert variety for w is
BwP = {y;,(c1)--yi,(c))P | c1,...,co € FgU {oo}}
The Bruhat order is the partial order on W* defined by

BwP = |_| BuP.

v<w

11 Week 8: Moment graphs and Kazhdan-Lusztig polynomials

11.1 Lecture 22: Moment graphs and Hr(G/B)

Let
L = Z-span{z1,...,x,} and S =Clxy,...,zn].

The moment graph G has vertices S,, and labeled edges

x—x; .
T — 8, if v < s45.
A sheaf F on G is a collection of
an S-module F* for each vertex x € V, an S-module F@¥) for each edge x — v,

and S-module morphisms
plev) . Fr F@Y) and pl(j”’y): FY — F@y for each edge (z,y) € E,

such that
if (r,y) € E then I(z,y)- Flewy) — .

Let T be the topology on W generated by the sets
Wep={yeW |y<uzx}, for x € W.

The collection 7 is the smallest collection of subsets of W which contains all the W, and is closed
under unions and intersections. Let F be a sheaf on G and let U € T. A section of F over U is an
element of

‘F(U) = {(f:c)er € @fx

zeU

if x,y € U and (z,y) € E then pgf’y)(fx) = p?(f’y)(fy)}.

A sheaf morphism from Fi to F2 is a collection of

an S-module morphism ¢*: F¥ — F3 for each vertex z € V,
an S-module morphism (@) : .Fl(m’y) — ]__2(1,y) for each edge (z,y) € F,

such that if (z,y) € E then

9O(flf,y)pgﬂflf,y) — pff’y)go”” and s0(937?4);)?(4964/) — pg(f’y)tpy- PICTURE
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The structure sheaf of G has

Fr=85, for x € S, and Fley) = l(a:i’;)S’ for (z,y) € E,
and, for (z,y) € E,
(®y) . s (z,y) S
pz"i 8 = I(z,y)S and it 8 = )
p = p+liz,y)s p = pFizy)s

The space Z(.S,,) of (global) sections of the structure sheaf Z is an S-algebra with scalar mutliplication,
addition and multiplication given componentwise: if f,g € Z(S,) and p € S and z € W then

(2f)z = pfz, (f+9)e = fo+ gu, (f9)e = fr9e.
Theorem 11.1. As S-algebras, Z(S,) = Hr(G/B).

11.2 Lecture 23: Sheaves on moment graphs

A graded free S-module is a graded S-module M such that there exist r € Z~¢ and ji,...,j € Z
such that
M = S[j1] @ - S, as graded S-modules.
The graded rank of M is ‘ '
grk(M) = qﬂl 4+ .. .qu'
A BMP sheaf on G, or Braden-MacPherson sheaf, is a sheaf B on G such that
(BMP1) If z € W then B* is a graded free S-module;
(BMP2) If (z,y) € E then
im(p?(f’y)) = By and ker(pg(f’y)) = l(x,y)BY.
(BMP3) If U € T then

BWwW) — B(U)

et
(f:r)mGW = (fiC)IEGU ' SurJeC lve’

(BMP4) If w € W then
B(W) — BY
(f06>xEW = fw

Theorem 11.2. If w € W then there is, up to isomorphism, a unique BMP sheaf B(w) such that

is surjective,

(a) B(w) is indecomposable, and
(b) B(w)* =S and B(w)* =0 unless v < w.
Theorem 11.3. If y,w € W then
Py = grk(B(w)?) is the KL-polynomial for the pair y,w.
Theorem 11.4. Let B be a BMP sheaf. Then there are wi,...,w, andly,...,l. € Z such that
B = B(w)[lh] & --- & Blw,)[ly].
Remark 11.5. The map

(BMP sheaves on W) <«— (T-equivariant perverse sheaves on G/B)
B(w) — IC(BwB)

is an equivalence of categories.
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11.3 Lecture 24: Kazhdan-Lusztig polynomials
Let H = Z[t,t !]-span{T,, | w € W} and let : H — H be a Z-linear map such that
-1 and Tw =Ty, + Z aywTy.

y<w

qa=q

(The ayy are sometimes called R-polynomials.)

Proposition 11.6. There exists a unique Cy € H such that

Cow="Ty+ Y PyuTw, with Py, €Z[t], and Cw = Ch.

y<w

Remark 11.7. In the case that H is the Hecke algebra and

T,=T71, for w e W,

w

the ay,, are called R-polynomials and the P, ., are called KL-polynomials.

12 Week 9: Macdonald and Koornwinder polynomials

12.1 Macdonald polynomials

Fix n € Z~¢y. The symmetric group .S, acts on Z" by defining

Si(f1s v ey fin) = (W1y vy fid1y fhiy- -y fn), forie{1,...,n—1}.
Let = (ft1,...,n) € Z". The minimal length permutation v, € S, such that v,u is weakly
increasing is given by
ouD) = 1+ 20 € {10 yi =1} | < s} + 40 € G+ 1, on} | o < i)

The symmetric group S,, acts on C[xlﬂ, ...,x;'] by permuting the variables,

(sif) (@1, yxn) = f(@1, oo Tig1, Tiy o oo, T, forie{l,...,n—1}.

The polynomial ring C[z7, ..., z;!] has C-basis {z* | u € Z"} and if pu € Z™ then s;zt = x5k,
Define operators 9;: ClzT, ...,z — Clz, ... x| by
1 .
0 =1+ s)—, forie{l,...,n—1}.

Ti — Ti+1
The electronic Macdonald polynomials E,, for u € Z" are determined by
(E0) E,,..0) =1,
(E1) If pi > piy1 then

_ i — i1 40 (3) —vp (i41)
(1—t)q g >E“
1 — gHi—Hi+1gvu(i)—vu(i+1)

Es,= <8¢Z’i —tx;0; +
where v, € S), is minimal length such that v,u is weakly increasing,
(EQ) E(,un—i-l,,ul,...,un,l) = qunl‘nEM(l‘% e 7xn7 q_lxl)a
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(E3) If k € Z then B =k pin—k) = (zq--- xn)_kEM(xl,xg, ey Tp).
Let A= (A1,..., ) € Z" with A; > -+ > A,. The bosonic Macdonald polynomial Py = Px(q,t) =

P,\(arl,...,xn;q,t) is 1 ;
T; —tx
P,\(%t):iw/\(t) Z ( /\H xl—xj>

wESy 1<j

where W) (t) is the appropriate constant which makes the coefficient of z* equal to 1 in Py(q,t).

12.2 Koornwinder polynomials
Fix n € Z~g. The group Wy, is generated by si,...,Sn—1, S, with relations

RELATIONS

The group Whg, acts on Z™ by defining

Si(fiy ey tin) = (H1y e ooy it 1y fiy - o s fn), forie{l,...,n—1}, and
Sn(:ulv"'v:un) = (,ulv"'a,un—la_:un)a

Let pp = (g1, ..., pn) € Z". The minimal length permutation v, € S, such that v, is antidominant
is given by
()T =T+ #{ e {1, i =1} | py <t +# e {i+ 1, ond | pe < ks
The group Wh, acts on ClzF!, ... 2! by
(sif) (@1, oy 2n) = f(@1, 0 g1, iy e oy T forie{l,...,n—1}, and
(snf) (@1 oan) = [z, 2,h),
(sof) (1, @) = f(¢" 721, 20, ..., 20)
Define operators 9;: Clz7, ...,z — ClaF, ..., x| by
1
8 =(1+s)—— foric{l,...,n—1}.
;= ( +Sz)xi_xi+l ori e { n—1}

The electronic Macdonald polynomials E,, for p € Z" are determined by
(E0) Eq,..0 =1,
(E1) Ifi e {1,...,n— 1} and p; > py1 then

B (1= £)qra—ros gon()=vu(i+1)
Esin = <8i$i — twi o+ 1 — grimrirt $ou()—va(it]) ) s

where v, € Wy, is minimal length such that v,u is antidominanat,

(E2) E(Mn+1,u1,...7un_1) = qM"UUnEu(JC% sy Ty qilxl)a

Let A = (A,...,A\p) € Z™ with A\y > -~ > X\, > 0. The bosonic Koornwinder polynomial
P)\ == P)\(xly-'-7xn§CI7t07tnau07un) is

1 " (1 — toura;) (1 + tousay) T — tx;
Py = w(E( e ’)):
W)\(t) w%n 11;[ 1—:1}12 111 .Ti—.l‘j

where W) (t) is the appropriate constant which makes the coefficient of z* equal to 1 in Py(q,t).
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13 Definitions of the symmetric functions

13.1 The power sum symmetric functions p,

Eefine p, for r € Z>g by
pr=2a] +x5H+ -+, and define Dv = Dy Pus - Puygs

for a sequence v = (v1,...,vy) of positive integers.

13.2 The elementary symmetric functions e,

Define e, for r € Z>¢ by

n

Z erz = H(l + x;2) and define €y = €1 €py - €y,

TEZZO =1

for a sequence v = (v1,...,1y) of positive integers.

13.3 The homogeneous symmetric functions h,

Define h, for r € Z>¢ by

n

1
> bz = H Tp—— and define = hy hyy - B,
r€l>o i=1
for a sequence v = (v1,...,1y) of positive integers.

13.4 The little ¢’s
Following [Mac, (Ch. III (2.10)], define g, for r € Z>¢ by

n
1—tz;z
Z QTZT = H " and define Qv = Qviqvs """ Quy,

LL 1 -z
TGZZO =1

for a sequence v = (v, ...,vy) of positive integers. In plethystic notation CHECK THIS

q = e [X(t —1)] and ey =qy [%}

13.5 The little ¢’s

For a symbol a define the infinite product

(@;0)00 = (1 —a)(1 — ag)(1 — ag?)--- .

Define g, for r € Z>( by

n
tx;z;q
o -IGEps  mddine =g
r€Z>o i=1 175 Y4)oo

for a sequence v = (v, ...,vy) of positive integers.
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13.6 The nonsymmetric Macdonald polynomials £,

Let C[X] = (C[xitl, ..., &1, The symmetric group S, acts on C[X] by permuting z1, ..., z,. Let
C[X]°" = {g € C[X] | if w € S,, then wg = g} the ring of symmetric functions.
Letting s1,...,s,_1 denote the simple transpositions in S,
(sif) (@1, oyxn) = f(@1, 000y Tim 1, Ti 1, Tiy Tig 2y« - oy Tny)-

For f e C[X] and i € {1,...,n — 1} define

— s
o= 1250
T — Ti41
Let Z%, denote the set of length n sequences p = (p1, . .., ftn) of nonnegative integers (sometimes

called the set of weak compositions). Define E, for p € Z%, by setting Eg,..0) = 1 and using the
following recursions:

(1— t)qm—m+1tvu(i)—vu(i+1)
(1) It Hi = Hitl then ESW - (C{%xl —twidi + 1— quz‘—ui-s-ltvu(i)*vu(ﬂrl) ) o

where v, € S), is minimal length such that v,u is weakly increasing, and
(2) Bt epin—1) = @0 Ep(2, . 20, ¢ 21).

Explicitly, the permutation v, € S, which is minimal length such that v,u is weakly increasing is
given by

v () =1+ #{ e {1,...,i =1} | po < pa} +#{ € {i+1,...n} | po < pi}.

13.7 The symmetric Macdonald polynomials P,

Let)\:(/\l,...,)\)ezowwh)\l -+ > \,. Define
1 T tx
P\(q,t) = - J
Mt = 37 w%; ( All;[xl—xj)

where W) (t) is the appropriate constant which makes the coefficient of z* equal to 1 in Py(q,t).

13.8 The big Js and the big Qs

Let A be a partition and let A denote the conjugate partition to A. Following, [Mac, VI (6.14)] for a
box b = (i,7) in A\ define

colegy (b)
coarm (b) FTaTmA(b) coleg, (b) =i — 1,
10F
o commi(b) =j~ 1, b=(ij),  am(®)=Xi—J,

legy(b) = N} — .
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The hook length h(b) and the content c(b) of the box b are defined by
h(b) = army(b) + leg, (b) + 1 and ¢(b) = coarmy (b) — coleg, ().
Define the upper and lower hooks of a box and the upper and lower hook products of a partition by
B (b) = 1 — germa(d)+1glean (), R (b) = 1 — garma(®)glegr(0)+1)
hy =[] ). h =TT n ).
beX beEA

The integral form Macdonald polynomials J, and the dual Macdonald polynomials (), are given by
[Macl (8.3) and (8.11)]:

R
JH(Qa t) = h’f:P/L(q’ t) and Q/L(Q7 t) = hTP/L(Qa t)
I

13.9 The fermionic Macdonald polynomials A,
For A= (A1,...,\y) € Z8q with A\; > -+ > A, define
Ad+d=NM+n—1 +n—-2,..., -1+ 1,\)

and

A/\+5(Q7t) = (Hm> Z (—1)£(w)wE,\+5.

’LUESTL

Theorem 13.1. (Weyl character formula for Macdonald polynomials)

A/\+5(Q7 t)
As(q,t) = T; —tx; and Py(q,qt) = ———=.
13.10 The Schurs sy and the Big Schurs S
The Schur functions sy and the Big Schurs Sy are given in [Mac, Ch. I (7.7) and Ch. VI (8.9)] by the

formulas

£(p)
1 1 |
2= X amd S-S0 = 3o, 0(TI0-)s,
P

P =1

where p,, is the power sum symmetric function and Xg\n are the irreducible characters of the symmetric
group. In plethystic notation

Sy = sA[X (1 —1t)] and s,\:S,\[é}

13.11 The modified Macdonald polynomials H,(z;,q,t)

Define K),(q,t) and the modified Macdonald polynomials fNIM by the formulas

Ju = ZK,\M(q,t)S)\ and I;'“ = Zt”(“)KM(q,t_l)s,\. (modMacdefn)
i 1
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In other words, change J,, to H u by changing Sy to sy, changing ¢ to t~1 and mutliplying by an overall
factor of ™), This buries all the plethystic substitution into the switch from Sy to s). Write

Kyu(g,t) = "MKy, (¢,t™")  so that A(g, 1 X) Zfﬁu gt

The relation (modMacdefn)) is not disssimilar to the relation
du :ZK/\;LSA- and hy, :ZK/\MSA, where Ky, = K,,(0,1).
A

Remark 13.2. Frangois Bergeron might define the modified Macdonald polynomials ﬁ# = f[u(q, t;x),
using plethystic notation, by

~ X o
HH(Q: th) = tn(#)PN(ﬁ’ q7t) H(qa(c) —t (I( )+1))‘ 0
cen

13.12 Transition matrices x(t), K(q,t), Z(q,t), V(q,t) and K(q,t)

Define x»,(t) by
= xa(t)m

Since xay = (SA(t), qv(t))o,r and (g, (t), mu)os = Opy and (Sx(t), su)o,r = Oy then
= Z Xow ()8,
A

Define Ky, (q,t) and Zy,(q,t) by

Tl t) =) Koulg.)Sn(t)  and  Ja(g,t) =D Zaulg,t)s
A H

Define ¥, (¢,t) and Ky,(q,t) by

)= Uulgtym, and  Ju(qqt) = ZICM (q:t)Tx(q,1)-

Remark 13.3. Relations: ¥(q,t) = Z(q,t)K(0,1) and ¥(q,t) = K(q,t)'x(t). Since

S\ — ZKAN(O’ 1)m

I

then

\Ij)\u CI7 ZZ)\,u Q7 /ﬂ/ 0 1) and \I/,uu Q7 ZK)\M q, )X)\V( ) O
A

Remark 13.4. A difference equation: D;¥ = KV so that K is a connection matrix! Since
DV = ¥(q,qt) = K(q,t)¥(g,t) = K and D.Z = Z(q,qt) = K(q,t)Z(q,t) = KZ,
then ¥ and Z a both solutions of the same difference equation, but with different initial conditions,

U(g,q) = K(0,1) and  Z(q,q) =id. O
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