3.12 Lecture 16: gcd, lcm, sup, inf, P + Q, $P \cap Q$

3.12.1 sup and inf

Let S be a set.

• A relation on S is a subset \angle of $S \times S$. If $x, y \in S$ and $(x, y) \in \angle$ write $x \angle y$.

A poset, or partially ordered set, is a set with a relation \leq on S such that

- (a) if $x, y, z \in S$ and $x \leq y$ and $y \leq z$ then $x \leq z$, and
- (b) If $x, y \in S$ and $x \leq y$ and $y \leq x$ then x = y.

A totally ordered set is a poset such that if $x, y \in S$ then $x \leq y$ or $y \leq x$.

Let (S, \leq) be a poset. Let *E* be a subset of *S*.

- A supremum of E, or least upper bound of E, is $\sup(E)$ such that
 - (a) $\sup(E) \in S$ and $\sup(E)$ satisfies the condition: if $x \in E$ then $x \leq \sup(E)$, and
 - (b) If $b \in S$ satisfiles the condition: if $x \in E$ then $x \leq b$, then $\sup(S) \leq b$.
- A infimum of E, or greatest lower bound of E, is inf(E) such that
 (a) inf(E) ∈ S and inf(E) satisfies the condition: if x ∈ E then inf(E) ≤ x, and
 - (b) If $b \in S$ satisfies the condition: if $x \in E$ then $x \leq b$, then $b \leq \inf(S)$.

HW: Give an example of a subset of \mathbb{Q} such that $\sup(E)$ does not exist.

3.12.2 P+Q and $P\cap Q$

Proposition 3.61. Let R be a ring and let M be an R-module. Let N be an R-submodule of M. Define

 $\mathcal{S}_N^M = \{P \mid N \subseteq P \subseteq M \text{ are } R\text{-module inclusions}\}$ partially ordered by inclusion.

For $P, Q \in \mathcal{S}_N^M$, define

 $P + Q = \{p + q \mid p \in P \text{ and } q \in Q\} \qquad and \qquad P \cap Q = \{m \in M \mid m \in P \text{ and } m \in Q\}$

(a) Let $P, Q \in \mathcal{S}_N^M$. Then

 $P + Q = \sup(P, Q)$ and $P \cap Q = \inf(P, Q)$.

(b) (modular law) If $L, P, Q \in \mathcal{S}_N^M$ and $P \subseteq Q$ then $Q + (L \cap P) = (Q + L) \cap P$.

3.12.3 gcd and lcm

A unique factorization domain (or UFD) is an integral domain R such that

- (a) If $x \in R$ then there exist irreducible $p_1, \ldots, p_n \in R$ such that $x = p_1 \cdots p_n$.
- (b) If $x \in R$ and $x = p_1 \cdots p_n = uq_1 \cdots q_m$ where $u \in R$ is a unit and $p_1, \ldots, p_n, q_1, \ldots, q_m \in R$ are irreducible then m = n and there exists a permutation $\sigma \colon \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}$ and units $u_1, \ldots, u_n \in R$ such that

if
$$i \in \{1, \ldots, n\}$$
 then $q_i = u_i p_{\sigma(i)}$.

Let R be a unique factorization domain and let $x, y \in R$.

- A greatest common divisor of x and y is gcd(x, y) such that
 - (a) $gcd(x,y) \in R$ and gcd(x,y) divides x and gcd(x,y) divides y,
 - (b) If $d \in R$ satisfies and d divides x and d divides y then d divides gcd(x, y).
- A least common multiple of x and y is lcm(x, y) such that
 - (a) lcm(x, y) and lcm(x, y) is a multiple of x and lcm(x, y) is a multiple of y,
 - (b) If $m \in R$ and m is a multiple of x and m is a multiple of y then then m is a multiple of lcm(x, y).

The following proposition says that if R is a UFD then sups and infs exist in the poset

 $\mathcal{P}_0^R = \{ \text{principal ideals of } R \}$ partially ordered by inclusion.

Proposition 3.62. Let R be a unique factorization domain and let $x, y \in R$. Then

(a) gcd(x, y) exists and lcm(x, y) exists.

(b) gcd(x, y) and lcm(x, y) are unique up to multiplication by a unit.

HW: Let \mathbb{A} be a PID and let $x, y \in \mathbb{A}$. Show that

 $gcd(x, y) \mathbb{A} = x\mathbb{A} + y\mathbb{A}$ and $lcm(x, y)\mathbb{A} = x\mathbb{A} \cap y\mathbb{A}$.

HW: Let R be a UFD and let $x, y \in R$. Show that if $x, y \in R$ and $p_1, \ldots, p_\ell \in R$ are irreducible and $a_1, \ldots, a_\ell, b_1, \ldots, b_\ell \in \mathbb{Z}_{\geq 0}$ and

$$x = p_1^{a_1} \cdots p_\ell^{a_\ell}$$
 and $y = p_1^{b_1} \cdots p_\ell^{b_\ell}$

then

$$gcd(x,y) = p_1^{\min(a_1,b_1)} \cdots p_\ell^{\min(a_\ell,b_\ell)}$$
 and $lcm(x,y) = p_1^{\max(a_1,b_1)} \cdots p_\ell^{\max(a_\ell,b_\ell)}$.

HW: Let R be a UFD and let $n \in \mathbb{Z}_{>0}$ and $a_0, \ldots, a_n \in R$. Define $gcd(a_0, \ldots, a_n)$ and $lcm(a_0, \ldots, a_n)$ and show that they exist and are unique up to multiplication by units.

3.12.4 Some proofs

Proposition 3.63. Let R be a ring and let M be an R-module. Let N be an R-submodule of M. Define

 $S_N^M = \{P \mid N \subseteq P \subseteq M \text{ are } R\text{-module inclusions}\}$ partially ordered by inclusion.

For $P, Q \in \mathcal{S}_N^M$, define

 $P + Q = \{p + q \mid p \in P \text{ and } q \in Q\} \qquad and \qquad P \cap Q = \{m \in M \mid m \in P \text{ and } m \in Q\}$

(a) Let $P, Q \in \mathcal{S}_N^M$. Then

 $P + Q = \sup(P, Q)$ and $P \cap Q = \inf(P, Q)$.

(b) (modular law) If $L, P, Q \in \mathcal{S}_N^M$ and $P \subseteq Q$ then $Q + (L \cap P) = (Q + L) \cap P$.

Proof.

(a) To show: (aa) $P \subseteq P + Q$ and $Q \subseteq P + Q$. (ab) If $L \in \mathcal{S}_N^M$ and $P \subseteq L$ and $Q \subseteq L$ then $P + Q \subseteq L$. (ac) $P \cap Q \subseteq P$ and $P \cap Q \subseteq Q$. (ad) If $K \in \mathcal{S}_N^M$ and $K \subseteq P$ and $K \subseteq Q$ then $K \subseteq P \cap Q$. (b) To show: If $P \subseteq Q$ then $Q \cap (P + L) = P + (Q \cap L)$. Assume $P \subseteq Q$. To show: $Q \cap (P + L) = P + (Q \cap L)$. To show: (ba) $Q \cap (P + L) \subseteq P + (Q \cap L)$. To show: (bb) $P + (Q \cap L) \subseteq Q \cap (P + L)$.

 $\begin{array}{ll} \mbox{(ba)} & \mbox{Assume } a \in Q \cap (P+L). \\ & \mbox{To show: } a \in P + (Q \cap L). \\ & \mbox{So there exist } p \in P \mbox{ and } \ell \in L \mbox{ such that } a = p + \ell. \\ & \mbox{Since } a \in Q \mbox{ and } p \in Q \mbox{ then } \ell = a - p \in Q. \\ & \mbox{So } \ell \in Q \cap L. \\ & \mbox{So } a = p + \ell \in P + (Q \cap L). \\ & \mbox{So } a = p + \ell \in P + (Q \cap L). \\ & \mbox{So } Q \cap (P + L) \subseteq P + (Q \cap L). \\ & \mbox{(bb)} \mbox{ Assume } b \in P + (Q \cap L). \\ & \mbox{To show: } b \in Q \cap (P + L) \\ & \mbox{Since } b \in P + (Q \cap L) \mbox{ then there exist } p \in P \mbox{ and } \ell \in Q \cap L \mbox{ such that } b = p + \ell. \\ & \mbox{Since } P \subseteq Q \mbox{ then } p \in Q. \\ & \mbox{So } b = p + \ell \in Q \cap (P + L). \\ & \mbox{So } b = p + \ell \in Q \cap (P + L). \\ & \mbox{So } b = p + \ell \in Q \cap (P + L). \\ & \mbox{So } P + (Q \cap L) \subseteq Q \cap (P + L). \end{array}$

$$P + (Q \cap L) = Q \cap (P + L).$$