### 3.12 Lecture 16: gcd, lcm, sup, inf, $P+Q, P \cap Q$

### 3.12.1 sup and inf

Let $S$ be a set.

- A relation on $S$ is a subset $\angle$ of $S \times S$. If $x, y \in S$ and $(x, y) \in \angle$ write $x \angle y$.

A poset, or partially ordered set, is a set with a relation $\leq$ on $S$ such that
(a) if $x, y, z \in S$ and $x \leq y$ and $y \leq z$ then $x \leq z$, and
(b) If $x, y \in S$ and $x \leq y$ and $y \leq x$ then $x=y$.

A totally ordered set is a poset such that if $x, y \in S$ then $x \leq y$ or $y \leq x$.
Let $(S, \leq)$ be a poset. Let $E$ be a subset of $S$.

- A supremum of $E$, or least upper bound of $E$, is $\sup (E)$ such that
(a) $\sup (E) \in S$ and $\sup (E)$ satisfies the condition: if $x \in E$ then $x \leq \sup (E)$, and
(b) If $b \in S$ satisfiles the condition: if $x \in E$ then $x \leq b$, then $\sup (S) \leq b$.
- A infimum of $E$, or greatest lower bound of $E$, is $\inf (E)$ such that
(a) $\inf (E) \in S$ and $\inf (E)$ satisfies the condition: if $x \in E$ then $\inf (E) \leq x$, and
(b) If $b \in S$ satisfles the condition: if $x \in E$ then $x \leq b$, then $b \leq \inf (S)$.

HW: Give an example of a subset of $\mathbb{Q}$ such that $\sup (E)$ does not exist.

### 3.12.2 $P+Q$ and $P \cap Q$

Proposition 3.61. Let $R$ be a ring and let $M$ be an $R$-module. Let $N$ be an $R$-submodule of $M$. Define

$$
\mathcal{S}_{N}^{M}=\{P \mid N \subseteq P \subseteq M \text { are } R \text {-module inclusions }\} \quad \text { partially ordered by inclusion. }
$$

For $P, Q \in \mathcal{S}_{N}^{M}$, define

$$
P+Q=\{p+q \mid p \in P \text { and } q \in Q\} \quad \text { and } \quad P \cap Q=\{m \in M \mid m \in P \text { and } m \in Q\}
$$

(a) Let $P, Q \in \mathcal{S}_{N}^{M}$. Then

$$
P+Q=\sup (P, Q) \quad \text { and } \quad P \cap Q=\inf (P, Q) .
$$

(b) (modular law) If $L, P, Q \in \mathcal{S}_{N}^{M}$ and $P \subseteq Q$ then $Q+(L \cap P)=(Q+L) \cap P$.

### 3.12.3 gcd and lcm

A unique factorization domain (or UFD) is an integral domain $R$ such that
(a) If $x \in R$ then there exist irreducible $p_{1}, \ldots, p_{n} \in R$ such that $x=p_{1} \cdots p_{n}$.
(b) If $x \in R$ and $x=p_{1} \cdots p_{n}=u q_{1} \cdots q_{m}$ where $u \in R$ is a unit and $p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m} \in R$ are irreducible then $m=n$ and there exists a permutation $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ and units $u_{1}, \ldots, u_{n} \in R$ such that

$$
\text { if } i \in\{1, \ldots, n\} \text { then } q_{i}=u_{i} p_{\sigma(i)} \text {. }
$$

Let $R$ be a unique factorization domain and let $x, y \in R$.

- A greatest common divisor of $x$ and $y$ is $\operatorname{gcd}(x, y)$ such that
(a) $\operatorname{gcd}(x, y) \in R$ and $\operatorname{gcd}(x, y)$ divides $x$ and $\operatorname{gcd}(x, y)$ divides $y$,
(b) If $d \in R$ satisfies and $d$ divides $x$ and $d$ divides $y$ then $d$ divides $\operatorname{gcd}(x, y)$.
- A least common multiple of $x$ and $y$ is $\operatorname{lcm}(x, y)$ such that
(a) $\operatorname{lcm}(x, y)$ and $\operatorname{lcm}(x, y)$ is a multiple of $x$ and $\operatorname{lcm}(x, y)$ is a multiple of $y$,
(b) If $m \in R$ and $m$ is a multiple of $x$ and $m$ is a multiple of $y$ then then $m$ is a multiple of $\operatorname{lcm}(x, y)$.

The following proposition says that if $R$ is a UFD then sups and infs exist in the poset

$$
\mathcal{P}_{0}^{R}=\{\text { principal ideals of } R\} \quad \text { partially ordered by inclusion. }
$$

Proposition 3.62. Let $R$ be a unique factorization domain and let $x, y \in R$. Then
(a) $\operatorname{gcd}(x, y)$ exists and $\operatorname{lcm}(x, y)$ exists.
(b) $\operatorname{gcd}(x, y)$ and $\operatorname{lcm}(x, y)$ are unique up to multiplication by a unit.

HW:. Let $\mathbb{A}$ be a PID and let $x, y \in \mathbb{A}$. Show that

$$
\operatorname{gcd}(x, y) \mathbb{A}=x \mathbb{A}+y \mathbb{A} \quad \text { and } \quad \operatorname{lcm}(x, y) \mathbb{A}=x \mathbb{A} \cap y \mathbb{A}
$$

HW:. Let $R$ be a UFD and let $x, y \in R$. Show that if $x, y \in R$ and $p_{1}, \ldots p_{\ell} \in R$ are irreducible and $a_{1}, \ldots, a_{\ell}, b_{1}, \ldots, b_{\ell} \in \mathbb{Z}_{\geq 0}$ and

$$
x=p_{1}^{a_{1}} \cdots p_{\ell}^{a_{\ell}} \quad \text { and } \quad y=p_{1}^{b_{1}} \cdots p_{\ell}^{b_{\ell}}
$$

then

$$
\operatorname{gcd}(x, y)=p_{1}^{\min \left(a_{1}, b_{1}\right)} \cdots p_{\ell}^{\min \left(a_{\ell}, b_{\ell}\right)} \quad \text { and } \quad \operatorname{lcm}(x, y)=p_{1}^{\max \left(a_{1}, b_{1}\right)} \cdots p_{\ell}^{\max \left(a_{\ell}, b_{\ell}\right)} .
$$

HW: Let $R$ be a UFD and let $n \in \mathbb{Z}_{>0}$ and $a_{0}, \ldots, a_{n} \in R$. Define $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)$ and $\operatorname{lcm}\left(a_{0}, \ldots, a_{n}\right)$ and show that they exist and are unique up to multiplication by units.

### 3.12.4 Some proofs

Proposition 3.63. Let $R$ be a ring and let $M$ be an $R$-module. Let $N$ be an $R$-submodule of $M$. Define

$$
\mathcal{S}_{N}^{M}=\{P \mid N \subseteq P \subseteq M \text { are } R \text {-module inclusions }\} \quad \text { partially ordered by inclusion. }
$$

For $P, Q \in \mathcal{S}_{N}^{M}$, define

$$
P+Q=\{p+q \mid p \in P \text { and } q \in Q\} \quad \text { and } \quad P \cap Q=\{m \in M \mid m \in P \text { and } m \in Q\}
$$

(a) Let $P, Q \in \mathcal{S}_{N}^{M}$. Then

$$
P+Q=\sup (P, Q) \quad \text { and } \quad P \cap Q=\inf (P, Q) .
$$

(b) (modular law) If $L, P, Q \in \mathcal{S}_{N}^{M}$ and $P \subseteq Q$ then $Q+(L \cap P)=(Q+L) \cap P$.

Proof.
(a) To show: (aa) $P \subseteq P+Q$ and $Q \subseteq P+Q$.
(ab) If $L \in \mathcal{S}_{N}^{M}$ and $P \subseteq L$ and $Q \subseteq L$ then $P+Q \subseteq L$.
(ac) $P \cap Q \subseteq P$ and $P \cap Q \subseteq Q$.
(ad) If $K \in \mathcal{S}_{N}^{M}$ and $K \subseteq P$ and $K \subseteq Q$ then $K \subseteq P \cap Q$.
(b) To show: If $P \subseteq Q$ then $Q \cap(P+L)=P+(Q \cap L)$. Assume $P \subseteq Q$.

To show: $Q \cap(P+L)=P+(Q \cap L)$.
To show: (ba) $Q \cap(P+L) \subseteq P+(Q \cap L)$.
To show: (bb) $P+(Q \cap L) \subseteq Q \cap(P+L)$.
(ba) Assume $a \in Q \cap(P+L)$.
To show: $a \in P+(Q \cap L)$.
So there exist $p \in P$ and $\ell \in L$ such that $a=p+\ell$.
Since $a \in Q$ and $p \in Q$ then $\ell=a-p \in Q$.
So $\ell \in Q \cap L$.
So $a=p+\ell \in P+(Q \cap L)$.
So $Q \cap(P+L) \subseteq P+(Q \cap L)$.
(bb) Assume $b \in P+(Q \cap L)$.
To show: $b \in Q \cap(P+L)$
Since $b \in P+(Q \cap L)$ then there exist $p \in P$ and $\ell \in Q \cap L$ such that $b=p+\ell$.
Since $P \subseteq Q$ then $p \in Q$.
So $b=p+\ell \in Q \cap(P+L)$.
So $P+(Q \cap L) \subseteq Q \cap(P+L)$.
$P+(Q \cap L)=Q \cap(P+L)$.

