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3.12 Lecture 16: gcd, lcm, sup, inf, P +Q, P \Q

3.12.1 sup and inf

Let S be a set.

• A relation on S is a subset \ of S ⇥ S. If x, y 2 S and (x, y) 2 \ write x\ y.

A poset, or partially ordered set, is a set with a relation  on S such that

(a) if x, y, z 2 S and x  y and y  z then x  z, and

(b) If x, y 2 S and x  y and y  x then x = y.

A totally ordered set is a poset such that if x, y 2 S then x  y or y  x.

Let (S,) be a poset. Let E be a subset of S.

• A supremum of E, or least upper bound of E, is sup(E) such that

(a) sup(E) 2 S and sup(E) satisfies the condition: if x 2 E then x  sup(E), and
(b) If b 2 S satisfiles the condition: if x 2 E then x  b, then sup(S)  b.

• A infimum of E, or greatest lower bound of E, is inf(E) such that

(a) inf(E) 2 S and inf(E) satisfies the condition: if x 2 E then inf(E)  x, and
(b) If b 2 S satisfles the condition: if x 2 E then x  b, then b  inf(S).

HW: Give an example of a subset of Q such that sup(E) does not exist.

3.12.2 P +Q and P \Q

Proposition 3.61. Let R be a ring and let M be an R-module. Let N be an R-submodule of M .
Define

S
M

N = {P | N ✓ P ✓ M are R-module inclusions} partially ordered by inclusion.

For P,Q 2 S
M

N
, define

P +Q = {p+ q | p 2 P and q 2 Q} and P \Q = {m 2 M | m 2 P and m 2 Q}

(a) Let P,Q 2 S
M

N
. Then

P +Q = sup(P,Q) and P \Q = inf(P,Q).

(b) (modular law) If L,P,Q 2 S
M

N
and P ✓ Q then Q+ (L \ P ) = (Q+ L) \ P .

3.12.3 gcd and lcm

A unique factorization domain (or UFD) is an integral domain R such that

(a) If x 2 R then there exist irreducible p1, . . . , pn 2 R such that x = p1 · · · pn .

(b) If x 2 R and x = p1 · · · pn = uq1 · · · qm where u 2 R is a unit and p1, . . . , pn, q1, . . . , qm 2 R

are irreducible then m = n and there exists a permutation � : {1, 2, . . . , n} ! {1, 2, . . . , n} and
units u1, . . . , un 2 R such that

if i 2 {1, . . . , n} then qi = uip�(i).
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Let R be a unique factorization domain and let x, y 2 R.

• A greatest common divisor of x and y is gcd(x, y) such that

(a) gcd(x, y) 2 R and gcd(x, y) divides x and gcd(x, y) divides y,

(b) If d 2 R satisfies and d divides x and d divides y then d divides gcd(x, y).

• A least common multiple of x and y is lcm(x, y) such that

(a) lcm(x, y) and lcm(x, y) is a multiple of x and lcm(x, y) is a multiple of y,

(b) If m 2 R and m is a multiple of x and m is a multiple of y then then m is a multiple of
lcm(x, y).

The following proposition says that if R is a UFD then sups and infs exist in the poset

P
R

0 = {principal ideals of R} partially ordered by inclusion.

Proposition 3.62. Let R be a unique factorization domain and let x, y 2 R. Then

(a) gcd(x, y) exists and lcm(x, y) exists.

(b) gcd(x, y) and lcm(x, y) are unique up to multiplication by a unit.

HW:. Let A be a PID and let x, y 2 A. Show that

gcd(x, y)A = xA+ yA and lcm(x, y)A = xA \ yA.

HW:. Let R be a UFD and let x, y 2 R. Show that if x, y 2 R and p1, . . . p` 2 R are irreducible and
a1, . . . , a`, b1, . . . , b` 2 Z�0 and

x = p
a1
1 · · · p

a`

`
and y = p

b1
1 · · · p

b`

`

then
gcd(x, y) = p

min(a1,b1)
1 · · · p

min(a`,b`)
`

and lcm(x, y) = p
max(a1,b1)
1 · · · p

max(a`,b`)
`

.

HW: Let R be a UFD and let n 2 Z>0 and a0, . . . , an 2 R. Define gcd(a0, . . . , an) and lcm(a0, . . . , an)
and show that they exist and are unique up to multiplication by units.

138



Algebra notes, Arun Ram April 7, 2024

3.12.4 Some proofs

Proposition 3.63. Let R be a ring and let M be an R-module. Let N be an R-submodule of M .
Define

S
M

N = {P | N ✓ P ✓ M are R-module inclusions} partially ordered by inclusion.

For P,Q 2 S
M

N
, define

P +Q = {p+ q | p 2 P and q 2 Q} and P \Q = {m 2 M | m 2 P and m 2 Q}

(a) Let P,Q 2 S
M

N
. Then

P +Q = sup(P,Q) and P \Q = inf(P,Q).

(b) (modular law) If L,P,Q 2 S
M

N
and P ✓ Q then Q+ (L \ P ) = (Q+ L) \ P .

Proof.
(a) To show: (aa) P ✓ P +Q and Q ✓ P +Q.

(ab) If L 2 S
M

N
and P ✓ L and Q ✓ L then P +Q ✓ L.

(ac) P \Q ✓ P and P \Q ✓ Q.
(ad) If K 2 S

M

N
and K ✓ P and K ✓ Q then K ✓ P \Q.

(b) To show: If P ✓ Q then Q \ (P + L) = P + (Q \ L). Assume P ✓ Q.
To show: Q \ (P + L) = P + (Q \ L).
To show: (ba) Q \ (P + L) ✓ P + (Q \ L).
To show: (bb) P + (Q \ L) ✓ Q \ (P + L).

(ba) Assume a 2 Q \ (P + L).

To show: a 2 P + (Q \ L).

So there exist p 2 P and ` 2 L such that a = p+ `.

Since a 2 Q and p 2 Q then ` = a� p 2 Q.

So ` 2 Q \ L.

So a = p+ ` 2 P + (Q \ L).

So Q \ (P + L) ✓ P + (Q \ L).

(bb) Assume b 2 P + (Q \ L).

To show: b 2 Q \ (P + L)

Since b 2 P + (Q \ L) then there exist p 2 P and ` 2 Q \ L such that b = p+ `.

Since P ✓ Q then p 2 Q.

So b = p+ ` 2 Q \ (P + L).

So P + (Q \ L) ✓ Q \ (P + L).

P + (Q \ L) = Q \ (P + L).
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