1.9 Lecture 9: Finitely generated modules over a PID

A principal ideal domain (PID) is a commutative ring \mathbb{A} such that
(a) (Cancellation law) If $a, b, c \in \mathbb{A}$ and $c \neq 0$ and $a c=b c$ then $a=b$,
(b) (Principal Ideals) If I is an ideal of \mathbb{A} then there exists $m \in R$ such that

$$
I=m \mathbb{A}, \quad \text { where } \quad m \mathbb{A}=\{c m \mid c \in \mathbb{A}\}=\mathbb{A} \text {-span }\{m\} .
$$

Let \mathbb{A} be a PID and let M be an \mathbb{A}-module. Let $B \subseteq M$. The submodule generated by S is

$$
\mathbb{A}-\operatorname{span}(B)=\left\{c_{1} b_{1}+\cdots c_{k} b_{k} \mid k \in \mathbb{Z}_{>0}, c_{1}, \ldots, c_{k} \in \mathbb{A}, b_{1}, \ldots, b_{k} \in B\right\}
$$

The module M is finitely generated if there exists a finite set $B \subseteq M$ such that $M=\mathbb{A}-\operatorname{span}(B)$.
Proposition 1.22. Let \mathbb{A} be a PID and let M be an \mathbb{A}-module given by generators

$$
\begin{array}{ccc}
& & a_{11} m_{1}+\cdots+a_{1 s} m_{s}=0, \\
\text { generators } \quad m_{1}, \ldots, m_{s} \in M \quad \text { and relations } \quad & \vdots \\
a_{t 1} m_{1}+\cdots+a_{t s} m_{s}=0 .
\end{array}
$$

Let $P \in G L_{t}(\mathbb{A}), Q \in G L_{s}(\mathbb{A}), k=\min (s, t)$ and $d_{1}, \ldots, d_{k} \in \mathbb{A}$ such that

$$
A=P D Q, \quad \text { where } \quad D=\operatorname{diag}\left(d_{1}, \ldots, d_{k}\right) \text {. }
$$

Then M is presented by

$$
\text { generators } \quad b_{1}, \ldots, b_{s} \quad \text { and relations } \quad d_{1} b_{1}=0, \quad \ldots, \quad d_{k} b_{k}=0 .
$$

Theorem 1.23. Let \mathbb{A} be a PID and let M be a finitely generated \mathbb{A} module. Then there exist $k, \ell \in \mathbb{Z}_{\geq 0}$ and $d_{1}, \ldots, d_{k} \in \mathbb{A}$ such that

$$
M \cong \frac{\mathbb{A}}{d_{1} \mathbb{A}} \oplus \cdots \oplus \frac{\mathbb{A}}{d_{k} \mathbb{A}} \oplus \mathbb{A}^{\oplus \ell}
$$

Special cases of $\mathbb{A} / d \mathbb{A}$ are

$$
\frac{\mathbb{A}}{0 \mathbb{A}}=\mathbb{A} \quad \text { and } \quad \text { if } u \in \mathbb{A}^{\times} \text {then } \quad \frac{\mathbb{A}}{u \mathbb{A}}=\frac{\mathbb{A}}{\mathbb{A}}=0
$$

Theorem 1.24. (Chinese remainder theorem) Let \mathbb{A} be a PID and let $d \in \mathbb{A}$.

$$
\text { Assume } \quad d=p q \quad \text { with } \quad \operatorname{gcd}(p, q)=1
$$

Then there exist $r, s \in A$ such that $1=p r+q s$ and

$$
\begin{array}{rlc}
\frac{\mathbb{A}}{d \mathbb{A}} & \xrightarrow{\sim} & \frac{\mathbb{A}}{p \mathbb{A}} \oplus \frac{\mathbb{A}}{q \mathbb{A}} \\
p r+p q \mathbb{A} & \mapsto & (0+p \mathbb{A}, 1+q \mathbb{A}) \\
q s+p q \mathbb{A} & \mapsto & (1+p \mathbb{A}, 0+q \mathbb{A}) \\
1+p q \mathbb{A} & \mapsto & \text { is an } \mathbb{A} \text {-module isomorphism. } \\
\hline & (1+p \mathbb{A}, 1+q \mathbb{A}) &
\end{array}
$$

Proof. . Let $r, s \in \mathbb{A}$ such that $p r+s q=1$. Then

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & p q
\end{array}\right)=\left(\begin{array}{cc}
p r+q s & 0 \\
0 & p q
\end{array}\right)=\left(\begin{array}{cc}
p & q \\
0 & q
\end{array}\right)\left(\begin{array}{cc}
r & -q \\
s & p
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
p & 0 \\
0 & q
\end{array}\right)\left(\begin{array}{cc}
r & -q \\
s & p
\end{array}\right)
$$

Using this and the method of proof of Proposition 1.22 gives

$$
\frac{\mathbb{A}}{p \mathbb{A}} \oplus \frac{\mathbb{A}}{q \mathbb{A}} \cong \frac{\mathbb{A}}{1 \cdot \mathbb{A}} \oplus \frac{\mathbb{A}}{p q \mathbb{A}}=0 \oplus \frac{\mathbb{A}}{p q \mathbb{A}}=\frac{\mathbb{A}}{p q \mathbb{A}}
$$

1.9.1 Proof sketches

Proposition 1.25. Let \mathbb{A} be a PID and let M be an \mathbb{A}-module given by generators

$$
\begin{array}{cc}
& \\
\text { generators } & m_{1}, \ldots, m_{s} \in M
\end{array} \quad \text { and relations } \quad \begin{aligned}
& 11 \\
& m_{1}+\cdots+a_{1 s} m_{s}=0, \\
& \\
& \\
& a_{t 1} m_{1}+\cdots+a_{t s} m_{s}=0,
\end{aligned}
$$

Let $P \in G L_{t}(\mathbb{A}), Q \in G L_{s}(\mathbb{A}), k=\min (s, t)$ and $d_{1}, \ldots, d_{k} \in \mathbb{A}$ such that

$$
A=P D Q, \quad \text { where } \quad D=\operatorname{diag}\left(d_{1}, \ldots, d_{k}\right)
$$

Then M is presented by
generators $\quad b_{1}, \ldots, b_{s} \quad$ and relations $\quad d_{1} b_{1}=0, \ldots, d_{k} b_{k}=0$.
Proof. For $i \in\{1, \ldots, s\}$ let

$$
b_{i}=Q_{i 1} m_{1}+\cdots+Q_{i s} m_{s}, \quad \text { so that } \quad m_{j}=\left(Q^{-1}\right)_{j 1} b_{1}+\cdots+\left(Q^{-1}\right)_{j s} b_{s}
$$

for $j \in\{1, \ldots, s\}$. Thus generators (m) can be written in terms of generators (b) and vice versa. Since

$$
\sum_{j} a_{i j} m_{j}=\sum_{j, k} a_{i j} Q_{j k}^{-1} b_{k}=\sum_{k} P_{i k} d_{k} b_{k}=0
$$

then the relations (m) can be derived from the relations (b). Since

$$
d_{k} b_{k}=\sum_{i, j, l}\left(P^{-1}\right)_{k j} a_{j l}\left(Q^{-1}\right)_{l k} b_{k}=\sum_{i, j, l}\left(P^{-1}\right)_{k j} a_{j l} m_{l}=0
$$

then the relations (b) can be derived from the relations (m).
Theorem 1.26. Let \mathbb{A} be a PID and let M be a finitely generated \mathbb{A} module. Then there exist $k, \ell \in \mathbb{Z}_{\geq 0}$ and $d_{1}, \ldots, d_{k} \in \mathbb{A}$ such that

$$
M \cong \frac{\mathbb{A}}{d_{1} \mathbb{A}} \oplus \cdots \oplus \frac{\mathbb{A}}{d_{k} \mathbb{A}} \oplus \mathbb{A}^{\oplus \ell}
$$

Proof. Since M is finitely generated there exist $s \in \mathbb{Z}_{>0}$ and $m_{1}, \ldots, m_{s} \in M$ such that

$$
M=\mathbb{A}-\operatorname{span}\left\{m_{1}, \ldots, m_{s}\right\}, \quad \text { Define } \begin{array}{rll}
\mathbb{A}^{\oplus s} & \xrightarrow{\Phi} & M \\
e_{i} & \longmapsto & m_{i}
\end{array} \quad \text { and let } \quad K=\operatorname{ker}(\Phi)
$$

Since \mathbb{A} satisfies $A C C$ and $\mathbb{A}^{\oplus s}$ is a finitely generated \mathbb{A}-module then

$$
\text { the } \mathbb{A} \text {-submodule } K \text { is finitely generated. }
$$

So there exist $t \in \mathbb{Z}_{>0}$ and

$$
a_{1}=\left(a_{11}, \ldots, a_{1 s}\right), \quad \ldots \quad a_{t}=\left(a_{t 1}, \ldots, a_{t s}\right) \quad \text { in } \mathbb{A}^{\oplus s} \quad \text { such that } \quad K=\mathbb{A}-\operatorname{span}\left\{a_{1}, \ldots, a_{t}\right\}
$$

Since

$$
M \cong \frac{\mathbb{A}^{\oplus s}}{K}
$$

then M is presented by

$$
\begin{array}{ccc}
& & a_{11} m_{1}+\cdots+a_{1 s} m_{s}=0 \\
\text { generators } & m_{1}, \ldots, m_{s} \in M & \text { and relations } \\
& a_{t 1} m_{1}+\cdots+a_{t s} m_{s}=0
\end{array}
$$

Then use the previous proposition to produce the isomorphism $M \cong \frac{\mathbb{A}}{d_{1} \mathbb{A}} \oplus \cdots \oplus \frac{\mathbb{A}}{d_{k} \mathbb{A}} \oplus \mathbb{A} \oplus \ell$.

