1.11 Tutorial 9 MAST30005 Semester I Year 2024

1. Let $K=\mathbb{Q}[\sqrt[p]{n}, \zeta]$ where n is a positive integer that is not a p-th power, p is a prime, and $\zeta=e^{\frac{2 \pi i}{p}}$.
(a) Find $[K: \mathbb{Q}]$ (Hint: What are the degrees of the intermediate field extensions?).
(b) Show that $\left|\operatorname{Aut}_{\mathbb{Q}}(K)\right| \leq p(p-1)$.
(c) Let $\alpha=\sqrt[p]{n}+\zeta$. Prove that $K=\mathbb{Q}[\alpha]$ (if it makes it simpler, assume n is large relative to $p)$.
(d) Write $K=E[\zeta]$ and $K=F[\sqrt[p]{n}$ for some appropriate subfields E and F. Deduce the existence of automorphisms σ_{i} and τ of K such that

$$
\sigma_{i}(\sqrt[p]{n})=\sqrt[p]{n}, \quad \sigma_{i}(\zeta)=\zeta^{i}
$$

and

$$
\tau(\sqrt[p]{n})=\zeta \sqrt[p]{n}, \quad \tau(\zeta)=\zeta
$$

(e) Show that the automorphism group of K is isomorphic to the group of invertible matrices of the form $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$ where the entries are in \mathbb{F}_{p}.
2. Let $F=\mathbb{C}(w)$. Let $f(x)=x^{4}-4 x^{2}+2-w$.
(a) Prove that $f(x)$ is irreducible in $F[x]$.
(b) Let $K=F[x] /(f(x))$. Prove that K is not a splitting field of f.
[Hint: It may be easier to identify $w=t^{4}+t^{-4}$ and identify F with the corresponding subfield of $\mathbb{C}(t)$, as here you can compute the roots of f explicitly]
3. (a) Show that $\operatorname{Aut}(\mathbb{Q})$ is the trivial group.
(b) Show that $\operatorname{Aut}(\mathbb{R})$ is the trivial group.
4. Let F be a field and $\delta \in F$ an element that is not a square in F. Show that

$$
K=\left\{\left.\left(\begin{array}{cc}
a & \delta b \\
b & a
\end{array}\right) \right\rvert\, a, b \in F\right\} \subset M_{2 \times 2}(F) \quad \text { is a field isomorphic to } \quad F[\sqrt{\delta}]=\frac{F[x]}{\left(x^{2}-\delta\right)}
$$

5. Let $F \subseteq \mathbb{C}$ be a field and suppose that $f \in F[x]$ is an irreducible (monic) quadratic polynomial. Let the roots of f be $\alpha, \beta \in \mathbb{C}$. Show that
(a) $F(\alpha)=F(\alpha, \beta)$
(b) $|\operatorname{Gal}(F(\alpha) / F)|=2, F(\alpha)$ is a Galois extension of F, and the non-trivial element in $\operatorname{Gal}(F(\alpha) / F)$ permutes α and β.
6. (a) Show that if a and b are rational numbers with $(a+b \sqrt{2})^{2}=1+\sqrt{2}$, then $(a-b \sqrt{2})^{2}=1-\sqrt{2}$. Use this to show that $1+\sqrt{2}$ is not a square in $\mathbb{Q}[\sqrt{2}]$.
(b) Let $K=\mathbb{Q}[\sqrt{1+\sqrt{2}}]$. Find $[K: \mathbb{Q}]$.
(c) Show that K / \mathbb{Q} is not Galois. [Hint: If it were Galois, then the minimal polynomial of $\sqrt{1+\sqrt{2}}$ would have four roots in K. Find those roots. Are they real?] [Comment: $K / \mathbb{Q}[\sqrt{2}]$ is Galois and $\mathbb{Q}[\sqrt{2}] / \mathbb{Q}$ is Galois. This example shows that being Galois is not a transitive property of field extensions.]
7. The n-th cyclotomic polynomial is defined by

$$
\Phi_{n}(x)=\prod_{1 \leq k \leq n, \operatorname{gcd}(n, k)=1}\left(x-e^{2 \pi i k / n}\right)
$$

(a) If p is prime, show that

$$
\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+\cdots+x+1
$$

Can you find a similar formula for Φ_{n} when n is a power of a prime?
(b) Prove that

$$
\prod_{d \mid n} \Phi_{d}(x)=x^{n}-1
$$

and use this to show by induction on n that $\Phi_{n}(x) \in \mathbb{Q}[x]$.
(c) Factor $\Phi_{12}(x)$ into irreducibles in $\mathbb{R}[x]$.
(d) Prove that $\Phi_{12}(x)$ is irreducible in $\mathbb{Q}[x]$. (A more general fact is that $\Phi_{n}(x)$ is always irreducible in $\mathbb{Q}[x])$
(e) Show that the Galois group of $\Phi_{12}(x)$ over \mathbb{Q} is the Klein Four group.
8. Let $F=\mathbb{Q}(\sqrt[4]{2}, i)$.
(a) Prove that F is a Galois field extension of \mathbb{Q}
(b) Compute $[F: \mathbb{Q}]$.
(c) Show that there exists $\tau \in \operatorname{Gal}_{\mathbb{Q}}(F)$ such that $\tau(\sqrt[4]{2})=i \sqrt[4]{2}$ and $\tau(i)=i$.
(d) Show that the Galois group $\operatorname{Gal}_{\mathbb{Q}}(F)$ is isomorphic to the dihedral group D_{4}.
(e) Find the intermediate fields between \mathbb{Q} and F.

