1.11 Tutorial 9 MAST30005 Semester I Year 2024

- 1. Let $K = \mathbb{Q}[\sqrt[p]{n}, \zeta]$ where *n* is a positive integer that is not a *p*-th power, *p* is a prime, and $\zeta = e^{\frac{2\pi i}{p}}$.
 - (a) Find $[K:\mathbb{Q}]$ (Hint: What are the degrees of the intermediate field extensions?).
 - (b) Show that $|\operatorname{Aut}_{\mathbb{Q}}(K)| \leq p(p-1)$.
 - (c) Let $\alpha = \sqrt[p]{n} + \zeta$. Prove that $K = \mathbb{Q}[\alpha]$ (if it makes it simpler, assume n is large relative to p).
 - (d) Write $K = E[\zeta]$ and $K = F[\sqrt[p]{n}]$ for some appropriate subfields E and F. Deduce the existence of automorphisms σ_i and τ of K such that

$$\sigma_i(\sqrt[p]{n}) = \sqrt[p]{n}, \quad \sigma_i(\zeta) = \zeta^*$$

and

$$\tau(\sqrt[p]{n}) = \zeta \sqrt[p]{n}, \quad \tau(\zeta) = \zeta$$

- (e) Show that the automorphism group of K is isomorphic to the group of invertible matrices of the form $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ where the entries are in \mathbb{F}_p .
- 2. Let $F = \mathbb{C}(w)$. Let $f(x) = x^4 4x^2 + 2 w$.
 - (a) Prove that f(x) is irreducible in F[x].
 - (b) Let K = F[x]/(f(x)). Prove that K is not a splitting field of f. [Hint: It may be easier to identify $w = t^4 + t^{-4}$ and identify F with the corresponding subfield of $\mathbb{C}(t)$, as here you can compute the roots of f explicitly]
- 3. (a) Show that $Aut(\mathbb{Q})$ is the trivial group.
 - (b) Show that $Aut(\mathbb{R})$ is the trivial group.
- 4. Let F be a field and $\delta \in F$ an element that is not a square in F. Show that

$$K = \left\{ \begin{pmatrix} a & \delta b \\ b & a \end{pmatrix} \mid a, b \in F \right\} \subset M_{2 \times 2}(F) \quad \text{is a field isomorphic to} \quad F[\sqrt{\delta}] = \frac{F[x]}{(x^2 - \delta)}.$$

- 5. Let $F \subseteq \mathbb{C}$ be a field and suppose that $f \in F[x]$ is an irreducible (monic) quadratic polynomial. Let the roots of f be $\alpha, \beta \in \mathbb{C}$. Show that
 - (a) $F(\alpha) = F(\alpha, \beta)$
 - (b) $|\text{Gal}(F(\alpha)/F)| = 2$, $F(\alpha)$ is a Galois extension of F, and the non-trivial element in $\text{Gal}(F(\alpha)/F)$ permutes α and β .
- 6. (a) Show that if a and b are rational numbers with $(a+b\sqrt{2})^2 = 1+\sqrt{2}$, then $(a-b\sqrt{2})^2 = 1-\sqrt{2}$. Use this to show that $1+\sqrt{2}$ is not a square in $\mathbb{Q}[\sqrt{2}]$.
 - (b) Let $K = \mathbb{Q}[\sqrt{1+\sqrt{2}}]$. Find $[K:\mathbb{Q}]$.
 - (c) Show that K/Q is not Galois. [Hint: If it were Galois, then the minimal polynomial of √1 + √2 would have four roots in K. Find those roots. Are they real?] [Comment: K/Q[√2] is Galois and Q[√2]/Q is Galois. This example shows that being Galois is not a transitive property of field extensions.]

7. The n-th cyclotomic polynomial is defined by

$$\Phi_n(x) = \prod_{1 \le k \le n, \gcd(n,k)=1} (x - e^{2\pi i k/n}).$$

(a) If p is prime, show that

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p - 1} + \dots + x + 1.$$

Can you find a similar formula for Φ_n when n is a power of a prime?

(b) Prove that

$$\prod_{d|n} \Phi_d(x) = x^n - 1,$$

and use this to show by induction on n that $\Phi_n(x) \in \mathbb{Q}[x]$.

- (c) Factor $\Phi_{12}(x)$ into irreducibles in $\mathbb{R}[x]$.
- (d) Prove that $\Phi_{12}(x)$ is irreducible in $\mathbb{Q}[x]$. (A more general fact is that $\Phi_n(x)$ is always irreducible in $\mathbb{Q}[x]$)
- (e) Show that the Galois group of $\Phi_{12}(x)$ over \mathbb{Q} is the Klein Four group.
- 8. Let $F = \mathbb{Q}(\sqrt[4]{2}, i)$.
 - (a) Prove that F is a Galois field extension of \mathbb{Q}
 - (b) Compute $[F : \mathbb{Q}]$.
 - (c) Show that there exists $\tau \in \operatorname{Gal}_{\mathbb{Q}}(F)$ such that $\tau(\sqrt[4]{2}) = i\sqrt[4]{2}$ and $\tau(i) = i$.
 - (d) Show that the Galois group $\operatorname{Gal}_{\mathbb{Q}}(F)$ is isomorphic to the dihedral group D_4 .
 - (e) Find the intermediate fields between \mathbb{Q} and F.