1.10 Tutorial 8 MAST30005 Semester I Year 2024: Polynomials and field extensions

1. Show that the following polynomials are irreducible in $\mathbb{Q}[x]$:

 $x^{2} - 12$, $8x^{3} + 4399x^{2} - 9x + 2$, and $2x^{10} - 25x^{3} + 10x^{2} - 30$.

- 2. List all monic polynomials of degree ≤ 2 in $\mathbb{F}_3[x]$. Determine which of these are irreducible.
- 3. Let $f(x) = x^3 5$. Show that f(x) does not factor into three linear polynomials with coefficients in $\mathbb{Q}[\sqrt[3]{5}]$.
- 4. (a) Find a degree four polynomial f(x) in $\mathbb{Q}[x]$ which has $\sqrt{2} + \sqrt{3}$ as a root.
 - (b) Find the degree of the field extension $\mathbb{Q}[\sqrt{2} + \sqrt{3}]$ of \mathbb{Q} . (Possible Hint: Any factor of f(x) in $\mathbb{Q}[x]$ is also a factor of f(x) in $\mathbb{C}[x]$, and we can list all these factors)
- 5. Show that a finite field has order a power of a prime.
- 6. Show that there are infinitely many irreducible polynomials of any given positive degree in $\mathbb{Q}[x]$.
- 7. Let F be a field of characteristic p and let q be a power of p. Show that

 $X = \{x \in F \mid x^q = x\}$ is a subfield of F.

- 8. Let α be a complex root of the irreducible polynomial $x^3 x + 4$. Find the inverse of $\alpha^2 + \alpha + 1$ in $\mathbb{Q}[\alpha]$ explicitly, in the form $a + b\alpha + c\alpha^2$, with $a, b, c \in \mathbb{Q}$.
- 9. Let F be a field, and α an element that generates a field extension of F of degree 5. Prove that α^2 generates the same extension.
- 10. Let a be a root of the polynomial $x^3 x + 1$. Determine the minimal polynomial for $a^2 + 1$ over \mathbb{Q} .
- 11. (a) Let $a, b, c, d \in \mathbb{C}$ with $ad bc \neq 0$. Prove that there exists an automorphism σ of $\mathbb{C}(z)$ with $\sigma(z) = \frac{az+b}{cz+d}$ (these are called Mobius transformations)
 - (b) Determine the relationship between composition of Mobius transformations and matrix multiplication.
 - (c) Show that the automorphisms $\sigma(t) = it$ and $\tau(t) = t^{-1}$ of $\mathbb{C}(t)$ generate a group G that is isomorphic to the dihedral group D_4 .
 - (d) Let $u = t^4 + t^{-4}$. Show that u is fixed under H.
 - (e) What is $[\mathbb{C}(t) : \mathbb{C}(u)]$?
- 12. Let F be a field and let a_1, a_2, \ldots, a_n be the roots of a polynomial $f \in F[x]$ of degree n. Prove that $[F[a_1, \ldots, a_n] : F] \leq n!$.
- 13. Let R be an integral domain that contains a field F as a subring and is finite dimensional when viewed as a vector space over F. Prove that R is a field.