1.10 Tutorial 8 MAST30005 Semester I Year 2024: Polynomials and field extensions

1. Show that the following polynomials are irreducible in $\mathbb{Q}[x]$:

$$
x^{2}-12, \quad 8 x^{3}+4399 x^{2}-9 x+2, \quad \text { and } \quad 2 x^{10}-25 x^{3}+10 x^{2}-30
$$

2. List all monic polynomials of degree ≤ 2 in $\mathbb{F}_{3}[x]$. Determine which of these are irreducible.
3. Let $f(x)=x^{3}-5$. Show that $f(x)$ does not factor into three linear polynomials with coefficients in $\mathbb{Q}[\sqrt[3]{5}]$.
4. (a) Find a degree four polynomial $f(x)$ in $\mathbb{Q}[x]$ which has $\sqrt{2}+\sqrt{3}$ as a root.
(b) Find the degree of the field extension $\mathbb{Q}[\sqrt{2}+\sqrt{3}]$ of \mathbb{Q}. (Possible Hint: Any factor of $f(x)$ in $\mathbb{Q}[x]$ is also a factor of $f(x)$ in $\mathbb{C}[x]$, and we can list all these factors)
5. Show that a finite field has order a power of a prime.
6. Show that there are infinitely many irreducible polynomials of any given positive degree in $\mathbb{Q}[x]$.
7. Let F be a field of characteristic p and let q be a power of p. Show that

$$
X=\left\{x \in F \mid x^{q}=x\right\} \quad \text { is a subfield of } F .
$$

8. Let α be a complex root of the irreducible polynomial $x^{3}-x+4$. Find the inverse of $\alpha^{2}+\alpha+1$ in $\mathbb{Q}[\alpha]$ explicitly, in the form $a+b \alpha+c \alpha^{2}$, with $a, b, c \in \mathbb{Q}$.
9. Let F be a field, and α an element that generates a field extension of F of degree 5 . Prove that α^{2} generates the same extension.
10. Let a be a root of the polynomial $x^{3}-x+1$. Determine the minimal polynomial for $a^{2}+1$ over \mathbb{Q}.
11. (a) Let $a, b, c, d \in \mathbb{C}$ with $a d-b c \neq 0$. Prove that there exists an automorphism σ of $\mathbb{C}(z)$ with $\sigma(z)=\frac{a z+b}{c z+d}$ (these are called Mobius transformations)
(b) Determine the relationship between composition of Mobius transformations and matrix multiplication.
(c) Show that the automorphisms $\sigma(t)=i t$ and $\tau(t)=t^{-1}$ of $\mathbb{C}(t)$ generate a group G that is isomorphic to the dihedral group D_{4}.
(d) Let $u=t^{4}+t^{-4}$. Show that u is fixed under H.
(e) What is $[\mathbb{C}(t): \mathbb{C}(u)]$?
12. Let F be a field and let $a_{1}, a_{2}, \ldots, a_{n}$ be the roots of a polynomial $f \in F[x]$ of degree n. Prove that $\left[F\left[a_{1}, \ldots, a_{n}\right]: F\right] \leq n!$.
13. Let R be an integral domain that contains a field F as a subring and is finite dimensional when viewed as a vector space over F. Prove that R is a field.
