5.13 Tutorial 7 Semester I, Year 2024: Jordan form and $\mathbb{F}[x]$-modules

1. Let \mathbb{F} be a field and define $D: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$ by

$$
D\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}
$$

(a) Verify that $D(f g)=D(f) g+f D(g)$, for all $f, g \in \mathbb{F}[x]$.
(b) An element α is called a double root of f if $(x-\alpha)^{2}$ divides f. Prove that α is a double root of f if and only if $f(\alpha)=0$ and $(D f)(\alpha)=0$.
2. Let $E=\mathbb{Q}(\alpha)$, where $\alpha^{3}-\alpha^{2}+\alpha+2=0$. Express

$$
\left(\alpha^{2}+\alpha+1\right)\left(\alpha^{2}-\alpha\right) \quad \text { and } \quad(\alpha-1)^{-1}
$$

in the form $a \alpha^{2}+b \alpha+c$ with $a, b, c \in \mathbb{Q}$.
3. Let

$$
A=\left(\begin{array}{ccc}
1-x & 1+x & x \\
x & 1-x & 1 \\
1+x & 2 x & 1
\end{array}\right) \in M_{3 \times 3}(\mathbb{Q}[x])
$$

Determine the $\mathbb{Q}[x]$-module V presented by A. Is V a cyclic $\mathbb{Q}[x]$-module?
4. (a) Compute the characteristic polynomial of the matrix

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & 0 & \cdots & 0 & -a_{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right) .
$$

(b) What is the characteristic polynomial of a matrix in rational canonical form?
(c) Use (b) to prove the Cayley-Hamilton Theorem: If A is a square matrix and $p(t)$ is its characteristic polynomial, then $p(A)=0$.
5. Let $R=\mathbb{Q}[x]$ and suppose that the R-module M is a direct sum of four cyclic modules

$$
\mathbb{Q}[x] /\left((x-1)^{3}\right) \oplus \mathbb{Q}[x] /\left(\left(x^{2}+1\right)^{2}\right) \oplus \mathbb{Q}[x] /\left((x-1)\left(x^{2}+1\right)^{4}\right) \oplus \mathbb{Q}[x] /\left((x+2)\left(x^{2}+1\right)^{2}\right) .
$$

(a) Decompose M into a direct sum of cyclic modules of the form $\mathbb{Q}[x] /\left(f_{i}^{m_{i}}\right)$, where f_{i} are monic irreducible polynomials in $\mathbb{Q}[x]$ and $m_{i}>0$.
(b) Find monic $d_{1}, d_{2}, \ldots, d_{k} \in \mathbb{Q}[x]$ with positive degree such that
(i) if $i \in\{1, \ldots, k-1\}$ then $d_{i} \mid d_{i+1}$, and
(ii) $M \cong \mathbb{Q}[x] /\left(d_{1}\right) \oplus \cdots \oplus \mathbb{Q}[x] /\left(d_{k}\right)$.
(c) Identify the $\mathbb{Q}[x]$-module M with the vector space M over \mathbb{Q} together with a linear operator

$$
\left.\begin{array}{rl}
X: \quad M & \rightarrow \\
v & \mapsto
\end{array}\right)
$$

Suppose the matrix of X is A with respect to a \mathbb{Q}-vector space basis of M. Determine the minimal and characteristic polynomials of A and the dimension of M over \mathbb{Q}.
6. Let $\lambda \in \mathbb{C}$ and $m \in \mathbb{Z}_{>0}$. Let V be the cyclic $\mathbb{C}[t]$-module

$$
V=\frac{\mathbb{C}[t]}{\left((t-\lambda)^{m}\right)}
$$

(a) Show that

$$
\left\{w_{0}=1, w_{1}=t-\lambda, w_{2}=(t-\lambda)^{2}, \ldots, w_{m-1}=(t-\lambda)^{m-1}\right\}
$$

is a basis of V as \mathbb{C}-vector space.
(b) Show that, with respect to the basis in (a), the matrix of

$$
T: \quad V \quad \rightarrow \quad V \quad \text { is of the form } \quad A=\left(\begin{array}{ccccc}
\lambda & & & \\
1 & \lambda & & & \\
& \ddots & \ddots & \\
& & \ddots & t v
\end{array}\right) \in M_{m \times m}(\mathbb{C}) .
$$

7. Suppose that V is an 8 dimensional complex vector space and $T: V \rightarrow V$ is a linear operator. Using T we make V into a $\mathbb{C}[t]$-module in the usual way. Suppose that as a $\mathbb{C}[t]$-module

$$
V \cong \frac{\mathbb{C}[t]}{\left((t+5)^{2}\right)} \oplus \frac{\mathbb{C}[t]}{\left((t-3)^{3}(t+5)^{3}\right)}
$$

What is the Jordan (normal) form for the transformation T ? What are the minimal and characteristic polynomials of T ?
8. Let V be an $F[t]$-module and $\left(v_{1}, \ldots, v_{n}\right)$ a basis of V as an F-vector space. Let $T: V \rightarrow V$ be a linear operator and $A \in M_{n \times n}(F)$ the matrix of T with respect to the basis $\left(v_{1}, \ldots, v_{n}\right)$. Prove that the $F[t]$-matrix $t I-A$ is a presentation matrix of (V, T) regarded as a $F[t]$-module.
9. Determine the Jordan normal form of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \in M_{3 \times 3}(\mathbb{C})
$$

by decomposing the $\mathbb{C}[t]$-module V presented by the matrix $t I-A \in M_{3 \times 3}(\mathbb{C}[t])$.
10. Find all possible Jordan normal forms for a matrix $A \in M_{5 \times 5}(\mathbb{C})$ whose characteristic polynomial is $(t+2)^{2}(t-5)^{3}$.

